ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 10, 2014
Accepted September 30, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Stabilization of hydrogen peroxide using tartaric acids in Fenton and fenton-like oxidation

Department of Applied Chemistry, Andong National University, Andong, Gyeongbuk 36729, Korea 1Department of Earth and Environmental Science, Andong National University, Andong, Gyeongbuk 36729, Korea 2Department of Environmental Engineering, College of Engineering, Andong National University, Andong, Gyeongbuk 36729, Korea
Korean Journal of Chemical Engineering, March 2016, 33(3), 885-892(8), 10.1007/s11814-015-0204-x
downloadDownload PDF

Abstract

The stabilization of hydrogen peroxide is a key factor in the efficiency of a Fenton reaction. The stability of hydrogen peroxide was evaluated in a Fenton reaction and Fenton-like reactions in the presence of tartaric acid as a stabilizer. The interactions between ferrous or ferric iron and tartaric acid were observed through spectroscopic monitoring at variable pH around pKa1 and pKa2 of the stabilizer. Ferric iron had a strong interaction with the stabilizer, and the strong interaction was dominant above pKa2. At a low pH, below pKa1, the stabilizing effect was at its maximum and the prolonged life-time of hydrogen peroxide gave a higher efficiency to the oxidative degradation of nitrobenzene. In Fenton-like reactions with hematite, the acidic conditions caused dissolution of iron from an iron oxide, and an increase in iron species was the result. Tartaric acid showed a stabilizing effect on hydrogen peroxide in the Fentonlike system. The stabilization by tartaric acid might be due to an inhibition of catalytic activity of dissolved iron, and the stabilization strongly depends on the ionization state of the stabilizer.

References

Fenton HJH, J. Chem. Soc.-Dalton Trans., 65, 899 (1984)
Mitsika EE, Christophoridis C, Fytianos K, Chemosphere, 93, 1818 (2013)
Laat JD, Gallard H, Environ. Sci. Technol., 33, 2726 (1999)
Lin SS, Gurol MD, Environ. Sci. Technol., 32, 1417 (1998)
Haber F, Weiss J, Proc. Roy. Soc. London, Ser. A., 147, 332 (1934)
de Luis A, Lombrana JI, Varona F, Menendez A, Korean J. Chem. Eng., 26(1), 48 (2009)
Kim HS, Lee WS, Ahn CY, Kim BH, Kim JE, Oh HM, Korean J. Chem. Eng., 27(6), 1750 (2010)
Zhang J, Chen S, Zhang Y, Quan X, Zhao HM, Zhang YB, J. Hazard. Mater., 274, 198 (2014)
Cortez S, Teixeira P, Oliveira R, Mota M, J. Environ. Manage., 92, 749 (2011)
Flotron V, Delteil C, Padellec Y, Camel V, Chemosphere, 59, 1427 (2005)
Jeon BC, Nam SY, Kim YK, Environ. Eng. Res., 19, 9 (2014)
Kwon BG, Kim JO, Kwon JK, Environ. Eng. Res., 18(1), 29 (2013)
Walling C, Goosen A, J. Am. Chem. Soc., 95, 2987 (1973)
Prasad KC, Watts RJ, J. Environ. Eng., 123, 11 (1997)
Lee JM, Kim JH, Chang YY, Chang YS, J. Hazard. Mater., 163(1), 222 (2009)
Matta R, Hanna K, Chiron S, Sci. Total Environ., 385, 242 (2007)
Galeano LA, Vicente MA, Gil A, Chem. Eng. J., 178, 146 (2011)
Xu J, Xin L, Huang T, Chang K, J. Environ. Sci., 23(11), 1873 (2011)
Hinchee RE, Downey DC, Aggarwal PK, J. Hazard. Mater., 27, 287 (1990)
Watts RJ, Teel AL, J. Environ. Eng.-ASCE, 131, 612 (2008)
Watts RJ, Foget MK, Kong SJ, J. Hazard. Mater., 69, 229 (1999)
Watts RJ, Dilly SE, J. Hazard. Mater., 51, 209 (1996)
Kwan WP, Voelker BM, Environ. Sci. Technol., 37, 1150 (2003)
Baciocchi R, Boni MR, D'Aprile L, J. Hazard. Mater., 107(3), 97 (2004)
Baciocchi R, Boni MR, D'Aprile L, J. Hazard. Mater., 96(2-3), 305 (2003)
Watts RJ, Finn DD, Cutler JTS, Teel AL, J. Contam. Hydrol., 91, 312 (2007)
Gomes A, Fernandes E, Lima JLFC, J. Biochem. Biophys. Methods, 65, 45 (2005)
Jung YS, Lim WT, Park JY, Kim YH, Environ. Technol., 30, 183 (2009)
Kim JE, Ha TW, Kim YH, J. Soil Groundwater Environ., 18(7), 25 (2013)
Flotron V, Delteil C, Padellec Y, Camel V, Chemosphere, 59(10), 1427 (2005)
Cao J, Lam KC, Dawson RW, Liu WX, Tao S, Chemosphere, 54, 507 (2004)
Jansen B, Nierop GJK, Verstraten MJ, Geoderma, 113, 323 (2003)
Christensen BJ, Christensen TH, Water Res., 34(15), 3743 (2000)
Laat JD, Gallard H, Environ. Sci. Technol., 33, 2726 (1999)
Duckworth OW, Martin ST, Geochim. Cosmochim. Acta, 65(23), 4289 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로