Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 16, 2015
Accepted October 22, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation
Department of Chemistry, Cauvery College for Women, Trichy, Tamilnadu, India 1Department of Chemistry, National College, Trichy, Tamilnadu, India 2Department of Chemistry, Bharath Institute of Higher Education and Research, Bharath University, Chennai - 600 073, Tamilnadu, India
meenachemist@gmail.com
Korean Journal of Chemical Engineering, March 2016, 33(3), 934-944(11), 10.1007/s11814-015-0224-6
Download PDF
Abstract
Green synthesis of selenium (chalcogen) nanoparticles (SeNPs) has been successfully attained by simple wet chemical method that involves the reaction of six different protic ionic liquids with imidazolium cations and sodium hydrogen selenide (NaHSe) in the presence of poly ethylene glycol-600 (PEG-600) as an additional stabilizer. The obtained SeNPs were characterized using UV spectral (UV), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) and high resolution transmission electron microscope (TEM) analysis. The results illustrate that the synthesized SeNPs are spherical in shape with size ranging 19-24 nm and possess good optical property with greater band gap energy, high thermal stability up to 330 oC, low melting point of 218-220 oC comparing to precursor selenium. Using the synthesized SeNPs, two chalcogenides such as ZnSe and CdSe semiconductor nanoparticles were synthesized and characterized using XRD, SEM with EDX and TEM analysis. The fabricated CdSe and ZnSe nanoparticles appeared like pebble and cluster structure with particle size of 29.97 nm and 22.73 nm respectively.
References
Kim KS, Demberelnyamba ND, Yeon SW, Choi S, Cha JH, Lee H, Korean J. Chem. Eng., 22(5), 717 (2005)
Kim JE, Kang JW, Lim JS, Korean J. Chem. Eng., 32(8), 1678 (2015)
Moon YH, Lee SM, Ha SH, Koo YM, Korean J. Chem. Eng., 23(2), 247 (2006)
Cha JH, Kim KS, Choi S, Yeon SH, Lee H, Lee CS, Shim JJ, Korean J. Chem. Eng., 24(6), 1089 (2007)
Antonietti M, Kuang DB, Smarsly B, Yong Z, Angew. Chem.-Int. Edit., 43, 4988 (2004)
Suh WH, Suh YH, Stucky GD, Nano Today, 4(1), 27 (2009)
Dahl JA, Maddux BLS, Hutchison JE, Chem. Rev., 107(6), 2228 (2007)
Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, J. Am. Chem. Soc., 124(16), 4228 (2002)
Li Z, Luan Y, Mu T, Chen G, Chem. Commun., 10, 1258 (2009)
Endres F, Bukowski M, Hempelmann R, Natter H, Angew. Chem.-Int. Edit., 42, 3428 (2003)
Shafiu S, Unal B, Baykal A, J. Inorg. Organomet. Polym., 23, 1335 (2013)
Baykal A, Gunay M, Toprak MS, Sozeri H, Mater. Res. Bull., 48(2), 378 (2013)
Jagminas A, Gailiute I, Niaura G, Giraitis R, Chemija., 16, 15 (2005)
Cao XB, Xie Y, Zhang SY, Li FQ, Adv. Mater., 16(7), 649 (2004)
Zhang J, Wang H, Yan X, Zhang L, Life Sci., 76, 1099 (2005)
Gates B, Mayers B, Cattle B, Xia YN, Adv. Funct. Mater., 12(3), 219 (2002)
Smith TW, Cheatham RA, Macromolecules, 13, 1203 (1980)
Son DH, Hughes SM, Yin Y, Alivisatos AP, Science, 306, 1009 (2004)
Camargo PHC, Lee YH, Jeong U, Zou ZQ, Xia YN, Langmuir, 23(6), 2985 (2007)
Langi B, Shah C, Singh K, Chaskar A, Kumar M, Bajaj PN, Mater. Res. Bull., 45(6), 668 (2010)
Meenatchi B, Renuga V, Int. J. Adv. Res., 2, 1107 (2014)
Antonietti M, Kuang D, Smarsly B, Zhou Y, Angew. Chem.-Int. Edit., 43, 4988 (2004)
Sze SM, Physics of semiconductor devices (2nd Ed.), Wiley, Delhi (1981).
Ludolph B, Malik MA, Chem. Commun., 17, 1849 (1998)
Eastman JA, Thompson LJ, Kestel BJ, Phys. Rev. B, 48, 84 (1993)
Ingole AR, Thakare SR, Khati NT, Wankhade AV, Burghate DK, Chalcogenide Lett., 7, 485 (2010)
Kim JE, Kang JW, Lim JS, Korean J. Chem. Eng., 32(8), 1678 (2015)
Moon YH, Lee SM, Ha SH, Koo YM, Korean J. Chem. Eng., 23(2), 247 (2006)
Cha JH, Kim KS, Choi S, Yeon SH, Lee H, Lee CS, Shim JJ, Korean J. Chem. Eng., 24(6), 1089 (2007)
Antonietti M, Kuang DB, Smarsly B, Yong Z, Angew. Chem.-Int. Edit., 43, 4988 (2004)
Suh WH, Suh YH, Stucky GD, Nano Today, 4(1), 27 (2009)
Dahl JA, Maddux BLS, Hutchison JE, Chem. Rev., 107(6), 2228 (2007)
Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, J. Am. Chem. Soc., 124(16), 4228 (2002)
Li Z, Luan Y, Mu T, Chen G, Chem. Commun., 10, 1258 (2009)
Endres F, Bukowski M, Hempelmann R, Natter H, Angew. Chem.-Int. Edit., 42, 3428 (2003)
Shafiu S, Unal B, Baykal A, J. Inorg. Organomet. Polym., 23, 1335 (2013)
Baykal A, Gunay M, Toprak MS, Sozeri H, Mater. Res. Bull., 48(2), 378 (2013)
Jagminas A, Gailiute I, Niaura G, Giraitis R, Chemija., 16, 15 (2005)
Cao XB, Xie Y, Zhang SY, Li FQ, Adv. Mater., 16(7), 649 (2004)
Zhang J, Wang H, Yan X, Zhang L, Life Sci., 76, 1099 (2005)
Gates B, Mayers B, Cattle B, Xia YN, Adv. Funct. Mater., 12(3), 219 (2002)
Smith TW, Cheatham RA, Macromolecules, 13, 1203 (1980)
Son DH, Hughes SM, Yin Y, Alivisatos AP, Science, 306, 1009 (2004)
Camargo PHC, Lee YH, Jeong U, Zou ZQ, Xia YN, Langmuir, 23(6), 2985 (2007)
Langi B, Shah C, Singh K, Chaskar A, Kumar M, Bajaj PN, Mater. Res. Bull., 45(6), 668 (2010)
Meenatchi B, Renuga V, Int. J. Adv. Res., 2, 1107 (2014)
Antonietti M, Kuang D, Smarsly B, Zhou Y, Angew. Chem.-Int. Edit., 43, 4988 (2004)
Sze SM, Physics of semiconductor devices (2nd Ed.), Wiley, Delhi (1981).
Ludolph B, Malik MA, Chem. Commun., 17, 1849 (1998)
Eastman JA, Thompson LJ, Kestel BJ, Phys. Rev. B, 48, 84 (1993)
Ingole AR, Thakare SR, Khati NT, Wankhade AV, Burghate DK, Chalcogenide Lett., 7, 485 (2010)