ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 28, 2015
Accepted October 18, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Optimization of PES/ZnO mixed matrix membrane preparation using response surface methodology for humic acid removal

1School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia 2Geology and Geophysics Department, Faculty of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia 3Chemical and Petrochemical Research Center, Commission for Research and Industrial Development, Ministry of Industry and Minerals, Baghdad, Iraq 4, Malaysia
Korean Journal of Chemical Engineering, March 2016, 33(3), 997-1007(11), 10.1007/s11814-015-0221-9
downloadDownload PDF

Abstract

The application of response surface methodology (RSM) in preparation and optimization of membranes is important in order to reduce the effort and time needed to achieving an optimum performance. RSM was used to develop an optimum polyethersulfone (PES)/ZnO mixed matrix (MM) membrane for humic acid removal. The MMs were synthesized by dispersing various amounts of hydrophilic ZnO nanoparticles (NPs) into a solution containing PES, polyvinylpyrrolidone (PVP) and dimethylacetamide (DMAc). Flat sheet MM membranes were prepared via the phase inversion method using the central composite design (CCD). The effects of four preparation parameters, such as PES, ZnO, PVP weight percentages and solvent evaporation time, were investigated. Pure water flux (PWF), humic acid flux (HAF) and humic acid rejection (HAR) were selected as a model responses. It was shown that PES and PVP were mainly affected on both PWF and HAF. Furthermore, the interaction effect between PES and ZnO-NPs shows a significant effect on PWF, while the quadratic effects of both solvent’s evaporation time and ZnO-NPs weight percentage coupled with the interaction effect between PES and PVP weight percentage shows the most significant parameters that affects HAR. The optimization method was subjected to maximize all of the PWF, HAF and HAR. It was also determined that the optimized membrane can be synthesized from a solution containing 17.25 wt% PES, 3.62 wt% ZnO and 3.75 wt% PVP with 15 s of solvent evaporation time. The optimum values of PWF, HAF and HAR were 222.3 (L/m2 h), 94.7 (L/m2 h), and 96.34%, respectively. Thus, it can be concluded that the CCD technique is capable of optimizing PES-ZnO membrane performance.

References

Singer PC, Water Sci. Technol., 40, 25 (1999)
Sani NAA, Lau WJ, Ismail AF, Korean J. Chem. Eng., 32(4), 743 (2015)
Salahi A, Mohammadi T, Behbahani RM, Hemmati M, Korean J. Chem. Eng., 32(6), 1101 (2015)
Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S, Chem. Eng. J., 223, 246 (2013)
Muhamad MS, Salim MR, Lau WJ, Korean J. Chem. Eng., 32(11), 2319 (2015)
Kim JH, Kim CK, J. Membr. Sci., 262(1-2), 60 (2005)
Han LF, Xu ZL, Cao Y, Wei YM, Xu HT, J. Membr. Sci., 375, 154 (2011)
Ran F, Nie S, Zhao W, Li J, Su B, Sun S, Zhao C, Acta Biomater., 7, 3370 (2011)
Huang J, Xue J, Xiang K, Zhang X, Cheng C, Sun S, Zhao C, Colloids Surf. B: Biointerfaces, 88, 315 (2011)
Rahimpour A, Madaeni SS, Mansourpanah Y, Desalination, 258(1-3), 79 (2010)
Qin HJ, Oo MH, Li Y, J. Membr. Sci., 247(1-2), 119 (2005)
Vatanpour V, Madaeni SS, Khataee AR, Salehi E, Zinadini S, Monfared HA, Desalination, 292, 19 (2012)
Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J, J. Membr. Sci., 389, 155 (2012)
Maximous N, Nakhla G, Wan W, Wong K, J. Membr. Sci., 352(1-2), 222 (2010)
Liu F, Hashim NA, Liu YT, Abed MRM, Li K, J. Membr. Sci., 375(1-2), 1 (2011)
Hernandez-Sierra JF, Ruiz F, Pena DCC, Martinez-Gutierrez F, Martinez AE, de Jesus Pozos Guillen A, Tapia-Perez H, Castanon GM, Nanomed. Nanotechnol. Biol. Med., 4, 237 (2008)
Dodd A, McKinley A, Saunders M, Tsuzuki T, J. Nanopart. Res., 8, 43 (2006)
Wang YJ, Yang LR, Luo GS, Dai YY, Chem. Eng. J., 146(1), 6 (2009)
Shen LG, Bian XK, Lu XF, Shi LQ, Liu ZY, Chen LF, Hou ZC, Fan K, Desalination, 293, 21 (2012)
Anitha S, Brabu B, Thiruvadigal DJ, Gopalakrishnan C, Natarajan TS, Carbohydr. Polym., 87, 1065 (2012)
Bai H, Liu Z, Sun DD, Colloids Surf. A: Physicochem. Eng. Asp., 410, 11 (2012)
Leo CP, Lee WPC, Ahmad AL, Mohammad AW, Sep. Purif. Technol., 89, 51 (2012)
Ahmad AL, Abdulkarim AA, Ismail S, Ooi BS, Desalin. Water Treat., 54, 3257 (2015)
Lan YQ, Peng P, Shi BL, Sep. Sci. Technol., 46(14), 2211 (2011)
Ismail AF, Lai PY, Sep. Purif. Technol., 40(2), 191 (2004)
Ma Y, Zhang Y, Zhao S, Wang Y, Wang S, Zhou Y, Li N, Xie H, Yu W, Liu Y, J. Biomed. Mater. Res. A, 100, 989 (2012)
Bakeri G, Ismail AF, Rana D, Matsuura T, Shariaty M, J. Appl. Polym. Sci., 123(5), 2812 (2012)
Ng LY, Leo CP, Mohammad AW, J. Appl. Polym. Sci., 121(3), 1804 (2011)
Ahmad MA, Harun WMHFW, Rashid NKA, Ahmad AL, Sidek O, Afif M, Miskam M, Ramli J, Hadi A, Jeefferie A, Int. J. Eng. Technol., 10, 1 (2010)
Anand K, Varghese S, Kurian T, Powder Technol., 271, 187 (2015)
Mahbubul IM, Saidur R, Amalina MA, Elcioglu EB, Okutucu-Ozyurt T, Ultrason. Sonochem., 26, 361 (2015)
Khan A, Shang J, Alam R, Int. J. Environ. Sci. Technol., 11, 1989 (2014)
Subramonian W, Wu TY, Chai SP, Ind. Crop. Prod., 70, 107 (2015)
Ahmad J, Hagg MB, J. Membr. Sci., 445, 200 (2013)
Mendonza A, Warzywoda J, Sacco A, J. Porous Mat., 13, 37 (2006)
Goh CS, Tan HT, Lee KT, Mohamed AR, Fuel Process. Technol., 91(9), 1146 (2010)
Shak KPY, Wu TY, Ind. Crop. Prod., 76, 1169 (2015)
Rajesh S, Senthilkumar S, Jayalakshmi A, Nirmala MT, Ismail AF, Mohan D, Colloids Surf. A: Physicochem. Eng. Asp., 418, 92 (2013)
Vatsha B, Ngila JC, Moutloali RM, Phys. Chem. Earth. Parts A/B/C, 67-69, 125 (2014)
Liu Y, Koops GH, Strathmann H, J. Membr. Sci., 223(1-2), 187 (2003)
Ngang HP, Ooi BS, Ahmad AL, Lai SO, Chem. Eng. J., 197, 359 (2012)
Razmjou A, Mansouri J, Chen V, J. Membr. Sci., 378(1-2), 73 (2011)
Li JF, Xu ZL, Yang H, Yu LY, Liu M, Appl. Surf. Sci., 255(9), 4725 (2009)
Wang LJ, Li ZS, Ren JZ, Li SG, Jiang CZ, J. Membr. Sci., 275(1-2), 46 (2006)
Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T, Chowdhury G, Pleizier G, Santerre JP, J. Membr. Sci., 231(1-2), 209 (2004)
Ohya H, Shiki S, Kawakami H, J. Membr. Sci., 326(2), 293 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로