Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 17, 2015
Accepted December 8, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Matrix based method for synthesis of main intensified and integrated distillation sequences
CAPE Lab, School of Chemical Engineering, Iran University of Science &Technology (IUST), Narmak, Tehran 168461-3114, Iran 1Research Institute of Petroleum Industry (RIPI), Olympic Sq., Tehran 14665-1998, Iran
kasiri@iust.ac.ir, capepub@cape.iust.ac.ir
Korean Journal of Chemical Engineering, April 2016, 33(4), 1134-1152(19), 10.1007/s11814-015-0273-x
Download PDF
Abstract
The objective of many studies in this area has involved access to a column-sequencing algorithm enabling designers and researchers alike to generate a wide range of sequences in a broad search space, and be as mathematically and as automated as possible for programing purposes and with good generality. In the present work an algorithm previously developed by the authors, called the matrix method, has been developed much further. The new version of the algorithm includes thermally coupled, thermodynamically equivalent, intensified, simultaneous heat and mass integrated and divided-wall column sequences which are of gross application and provide vast saving potential both on capital investment, operating costs and energy usage in industrial applications. To demonstrate the much wider searchable space now accessible, a three component separation has been thoroughly examined as a case study, always resulting in an integrated sequence being proposed as the optimum.
References
Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689 (2006)
Sargent RWH, Gaminibandara K, Optimum Design of Plate Distillation Column. Optimization in Action, Dixon, L.W. C. Academic Press, London (1976).
Sargent RWH, Comput. Chem. Eng., 22(1-2), 31 (1998)
Agrawal R, Ind. Eng. Chem. Res., 35(4), 1059 (1996)
Agrawal R, AIChE J., 49(2), 379 (2003)
Giridhar A, Agrawal R, Comput. Chem. Eng., 34(1), 73 (2010)
Fidkowski ZT, AIChE J., 52(6), 2098 (2006)
Caballero JA, Grossmann IE, AIChE J., 49(11), 2864 (2003)
Caballero JA, Grossmann IE, Comput. Chem. Eng., 28(11), 2307 (2004)
Caballero JA, Grossmann IE, Ind. Eng. Chem. Res., 45(25), 8454 (2006)
Caballero JA, Grossmann IE, Comput. Chem. Eng., 61, 118 (2014)
Errico M, Rong BG, Tola G, Turunen I, Chem. Eng. Process., 48(4), 907 (2009)
Rong BG, Errico M, Chem. Eng. Process., 62, 1 (2012)
Errico M, Rong BG, Torres-Ortega CE, Segovia-Hernandez JG, Comput. Chem. Eng., 62, 1 (2014)
Ivakpour J, Kasiri N, Ind. Eng. Chem. Res., 48(18), 8635 (2009)
Shah VH, Agrawal R, AIChE J., 56(7), 1759 (2010)
Shenvi AA, Shah VH, Zeller JA, Agrawal R, AIChE J., 58(8), 2479 (2012)
Shah PB, Kokossis AC, Comput. Chem. Eng., 25(4-6), 867 (2001)
Shah PB, Kokossis AC, AIChE J., 48(3), 527 (2002)
Kim JK, Wankat PC, Ind. Eng. Chem. Res., 43(14), 3838 (2004)
Rong BG, Kraslawski A, Nystrom L, Comput. Chem. Eng., 24(2-7), 247 (2000)
Rong BG, Kraslawski A, Nystrom L, Comput. Chem. Eng., 25(4-6), 807 (2001)
Rong BG, Kraslawski A, Ind. Eng. Chem. Res., 41(23), 5716 (2002)
Rong BG, Kraslawski A, AIChE J., 49(5), 1340 (2003)
Rong BG, Kraslawski A, Turunen I, Ind. Eng. Chem. Res., 43(18), 5904 (2004)
Rong BG, Turunen I, Chem. Eng. Res. Des., 84(A12), 1095 (2006)
Rong BG, Turunen I, Chem. Eng. Res. Des., 84(A12), 1117 (2006)
Kim YH, Ind. Eng. Chem. Res., 40(11), 2460 (2001)
Kim YH, Chem. Eng. J., 89(1-3), 89 (2002)
Kim SB, Ruiz GJ, Linninger AA, Ind. Eng. Chem. Res., 49(14), 6499 (2010)
Kim SB, Linninger AA, Ind. Eng. Chem. Res., 49(18), 8670 (2010)
Wang XH, Hu YD, Li YG, Korean J. Chem. Eng., 25(3), 402 (2008)
Yoo H, Binns M, Jang MJ, Cho H, Kim JK, Korean J. Chem. Eng., Under Publication, 32 (2015)
Hohmann EC, Sander MT, Dunhford H, Chem. Eng. Commun., 17, 273 (1982)
Agrawal R, Fidkowski ZT, AIChE J., 44(11), 2565 (1998)
Shenvi AA, Shah VH, Agrawal R, AIChE J., 59(1), 272 (2013)
Asprion N, Kaibel G, Chem. Eng. Process., 49(2), 139 (2010)
Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567 (2012)
Minh LQ, Long NVD, Lee M, Korean J. Chem. Eng., 29(11), 1500 (2012)
Long NVD, Lee MY, Korean J. Chem. Eng., 30(2), 286 (2013)
Seader JD, Henley EJ, Roper DK, Separation Process Principles, Chemical and Biochemical Operations, Wiley, New York, USA (2011).
Douglas JM, Conceptual Design of Chemical Processes, McGraw-Hill: United States (1988).
Seider WD, Seader JD, Lewin DR, Widagdo S, Product and Process Design Principles, 3rd Ed., Wiley, Asia (2010).
Sargent RWH, Gaminibandara K, Optimum Design of Plate Distillation Column. Optimization in Action, Dixon, L.W. C. Academic Press, London (1976).
Sargent RWH, Comput. Chem. Eng., 22(1-2), 31 (1998)
Agrawal R, Ind. Eng. Chem. Res., 35(4), 1059 (1996)
Agrawal R, AIChE J., 49(2), 379 (2003)
Giridhar A, Agrawal R, Comput. Chem. Eng., 34(1), 73 (2010)
Fidkowski ZT, AIChE J., 52(6), 2098 (2006)
Caballero JA, Grossmann IE, AIChE J., 49(11), 2864 (2003)
Caballero JA, Grossmann IE, Comput. Chem. Eng., 28(11), 2307 (2004)
Caballero JA, Grossmann IE, Ind. Eng. Chem. Res., 45(25), 8454 (2006)
Caballero JA, Grossmann IE, Comput. Chem. Eng., 61, 118 (2014)
Errico M, Rong BG, Tola G, Turunen I, Chem. Eng. Process., 48(4), 907 (2009)
Rong BG, Errico M, Chem. Eng. Process., 62, 1 (2012)
Errico M, Rong BG, Torres-Ortega CE, Segovia-Hernandez JG, Comput. Chem. Eng., 62, 1 (2014)
Ivakpour J, Kasiri N, Ind. Eng. Chem. Res., 48(18), 8635 (2009)
Shah VH, Agrawal R, AIChE J., 56(7), 1759 (2010)
Shenvi AA, Shah VH, Zeller JA, Agrawal R, AIChE J., 58(8), 2479 (2012)
Shah PB, Kokossis AC, Comput. Chem. Eng., 25(4-6), 867 (2001)
Shah PB, Kokossis AC, AIChE J., 48(3), 527 (2002)
Kim JK, Wankat PC, Ind. Eng. Chem. Res., 43(14), 3838 (2004)
Rong BG, Kraslawski A, Nystrom L, Comput. Chem. Eng., 24(2-7), 247 (2000)
Rong BG, Kraslawski A, Nystrom L, Comput. Chem. Eng., 25(4-6), 807 (2001)
Rong BG, Kraslawski A, Ind. Eng. Chem. Res., 41(23), 5716 (2002)
Rong BG, Kraslawski A, AIChE J., 49(5), 1340 (2003)
Rong BG, Kraslawski A, Turunen I, Ind. Eng. Chem. Res., 43(18), 5904 (2004)
Rong BG, Turunen I, Chem. Eng. Res. Des., 84(A12), 1095 (2006)
Rong BG, Turunen I, Chem. Eng. Res. Des., 84(A12), 1117 (2006)
Kim YH, Ind. Eng. Chem. Res., 40(11), 2460 (2001)
Kim YH, Chem. Eng. J., 89(1-3), 89 (2002)
Kim SB, Ruiz GJ, Linninger AA, Ind. Eng. Chem. Res., 49(14), 6499 (2010)
Kim SB, Linninger AA, Ind. Eng. Chem. Res., 49(18), 8670 (2010)
Wang XH, Hu YD, Li YG, Korean J. Chem. Eng., 25(3), 402 (2008)
Yoo H, Binns M, Jang MJ, Cho H, Kim JK, Korean J. Chem. Eng., Under Publication, 32 (2015)
Hohmann EC, Sander MT, Dunhford H, Chem. Eng. Commun., 17, 273 (1982)
Agrawal R, Fidkowski ZT, AIChE J., 44(11), 2565 (1998)
Shenvi AA, Shah VH, Agrawal R, AIChE J., 59(1), 272 (2013)
Asprion N, Kaibel G, Chem. Eng. Process., 49(2), 139 (2010)
Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567 (2012)
Minh LQ, Long NVD, Lee M, Korean J. Chem. Eng., 29(11), 1500 (2012)
Long NVD, Lee MY, Korean J. Chem. Eng., 30(2), 286 (2013)
Seader JD, Henley EJ, Roper DK, Separation Process Principles, Chemical and Biochemical Operations, Wiley, New York, USA (2011).
Douglas JM, Conceptual Design of Chemical Processes, McGraw-Hill: United States (1988).
Seider WD, Seader JD, Lewin DR, Widagdo S, Product and Process Design Principles, 3rd Ed., Wiley, Asia (2010).