ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 17, 2015
Accepted October 26, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modeling and analysis of circulation variables of continuous sorbent loop cycling for CO2 capture

1Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea 2Department of Energy Systems Research, Ajou University, Suwon 16499, Korea 3Department of Chemical Engineering, Ajou University, Suwon 16499, Korea
mjpark@ajou.ac.kr
Korean Journal of Chemical Engineering, April 2016, 33(4), 1153-1158(6), 10.1007/s11814-015-0226-4
downloadDownload PDF

Abstract

Carbon capture and storage (CCS) technologies are a cornerstone for reducing CO2 emissions from energy and energy-intensive industries. Among the various CCS technologies, solid sorbent looping systems are considered to be potentially promising solutions for reducing CO2 capture energy penalty. We present an evaluation module for a carbonator with sorbent looping cycle to calculate the carbonation efficiency. The module incorporates a simple sorbent activity model, and the solid/gas balances are constructed by assuming simple reactor mixing quality. By conducting simulations, we examine the variation in the carbonation efficiencies as a function of the sorbent looping operation factors and discuss an optimum operating strategy.

References

Karl M, Svendby T, Walker SE, Velken AS, Castell N, Solberg S, Sci. Total Environ., 527-528, 185 (2015)
Ozcan DC, Ahn H, Brandani S, Int. J. Greenhouse Gas Control, 19, 530 (2013)
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K, Chem. Eng. Res. Des., 77(1), 62 (1999)
Nemtsov DA, Zabaniotou A, Chem. Eng. J., 143(1-3), 10 (2008)
Atsonios K, Grammelis P, Antiohos SK, Nikolopoulos N, Kakaras E, Fuel, 153, 210 (2015)
Lasheras A, Strohle J, Galloy A, Epple B, Int. J. Greenhouse Gas Control, 5, 686 (2011)
Ylatalo J, Ritvanen J, Arias B, Tynjala T, Hyppanen T, Int. J. Greenhouse Gas Control, 9, 130 (2012)
Fang F, Li ZS, Cai NS, Energy Fuels, 23(1), 207 (2009)
Wang SP, Shen H, Fan SS, Zhao YJ, Ma XB, Gong JL, AIChE J., 59(10), 3586 (2013)
Hejazi B, Grace JR, Bi XT, Mahecha-Botero A, Fuel, 117, 1256 (2014)
Sarkar A, Pan W, Suh D, Huckaby ED, Sun X, Powder Technol., 265, 35 (2014)
Atsonios K, Zeneli M, Nikolopoulos A, Nikolopoulos N, Grammelis P, Kakaras E, Fuel, 153, 371 (2015)
Ayobi M, Shahhosseini S, Behjat Y, J. Taiwan Inst. Chem. E., 45, 421 (2014)
Kunii D, Levenspiel O, Ind. Eng. Chem. Prod. Res. Dev., 7, 481 (1968)
Kunii D, Levenspiel O, Chem. Eng. Sci., 55(20), 4563 (2000)
Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvarez D, AIChE J., 50(7), 1614 (2004)
Alonso M, Rodriguez N, Grasa G, Abanades JC, Chem. Eng. Sci., 64(5), 883 (2009)
Lee DK, Chem. Eng. J., 100(1-3), 71 (2004)
Yoo KY, Shin DY, Park MJ, Korean J. Chem. Eng., 31(9), 1532 (2014)
Alvarez D, Abanades JC, Ind. Eng. Chem. Res., 44(15), 5608 (2005)
Cao CQ, Zhang K, He CC, Zhao YA, Guo QJ, Chem. Eng. Sci., 66(3), 375 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로