Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 17, 2015
Accepted October 26, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Modeling and analysis of circulation variables of continuous sorbent loop cycling for CO2 capture
1Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea 2Department of Energy Systems Research, Ajou University, Suwon 16499, Korea 3Department of Chemical Engineering, Ajou University, Suwon 16499, Korea
mjpark@ajou.ac.kr
Korean Journal of Chemical Engineering, April 2016, 33(4), 1153-1158(6), 10.1007/s11814-015-0226-4
Download PDF
Abstract
Carbon capture and storage (CCS) technologies are a cornerstone for reducing CO2 emissions from energy and energy-intensive industries. Among the various CCS technologies, solid sorbent looping systems are considered to be potentially promising solutions for reducing CO2 capture energy penalty. We present an evaluation module for a carbonator with sorbent looping cycle to calculate the carbonation efficiency. The module incorporates a simple sorbent activity model, and the solid/gas balances are constructed by assuming simple reactor mixing quality. By conducting simulations, we examine the variation in the carbonation efficiencies as a function of the sorbent looping operation factors and discuss an optimum operating strategy.
References
Karl M, Svendby T, Walker SE, Velken AS, Castell N, Solberg S, Sci. Total Environ., 527-528, 185 (2015)
Ozcan DC, Ahn H, Brandani S, Int. J. Greenhouse Gas Control, 19, 530 (2013)
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K, Chem. Eng. Res. Des., 77(1), 62 (1999)
Nemtsov DA, Zabaniotou A, Chem. Eng. J., 143(1-3), 10 (2008)
Atsonios K, Grammelis P, Antiohos SK, Nikolopoulos N, Kakaras E, Fuel, 153, 210 (2015)
Lasheras A, Strohle J, Galloy A, Epple B, Int. J. Greenhouse Gas Control, 5, 686 (2011)
Ylatalo J, Ritvanen J, Arias B, Tynjala T, Hyppanen T, Int. J. Greenhouse Gas Control, 9, 130 (2012)
Fang F, Li ZS, Cai NS, Energy Fuels, 23(1), 207 (2009)
Wang SP, Shen H, Fan SS, Zhao YJ, Ma XB, Gong JL, AIChE J., 59(10), 3586 (2013)
Hejazi B, Grace JR, Bi XT, Mahecha-Botero A, Fuel, 117, 1256 (2014)
Sarkar A, Pan W, Suh D, Huckaby ED, Sun X, Powder Technol., 265, 35 (2014)
Atsonios K, Zeneli M, Nikolopoulos A, Nikolopoulos N, Grammelis P, Kakaras E, Fuel, 153, 371 (2015)
Ayobi M, Shahhosseini S, Behjat Y, J. Taiwan Inst. Chem. E., 45, 421 (2014)
Kunii D, Levenspiel O, Ind. Eng. Chem. Prod. Res. Dev., 7, 481 (1968)
Kunii D, Levenspiel O, Chem. Eng. Sci., 55(20), 4563 (2000)
Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvarez D, AIChE J., 50(7), 1614 (2004)
Alonso M, Rodriguez N, Grasa G, Abanades JC, Chem. Eng. Sci., 64(5), 883 (2009)
Lee DK, Chem. Eng. J., 100(1-3), 71 (2004)
Yoo KY, Shin DY, Park MJ, Korean J. Chem. Eng., 31(9), 1532 (2014)
Alvarez D, Abanades JC, Ind. Eng. Chem. Res., 44(15), 5608 (2005)
Cao CQ, Zhang K, He CC, Zhao YA, Guo QJ, Chem. Eng. Sci., 66(3), 375 (2011)
Ozcan DC, Ahn H, Brandani S, Int. J. Greenhouse Gas Control, 19, 530 (2013)
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K, Chem. Eng. Res. Des., 77(1), 62 (1999)
Nemtsov DA, Zabaniotou A, Chem. Eng. J., 143(1-3), 10 (2008)
Atsonios K, Grammelis P, Antiohos SK, Nikolopoulos N, Kakaras E, Fuel, 153, 210 (2015)
Lasheras A, Strohle J, Galloy A, Epple B, Int. J. Greenhouse Gas Control, 5, 686 (2011)
Ylatalo J, Ritvanen J, Arias B, Tynjala T, Hyppanen T, Int. J. Greenhouse Gas Control, 9, 130 (2012)
Fang F, Li ZS, Cai NS, Energy Fuels, 23(1), 207 (2009)
Wang SP, Shen H, Fan SS, Zhao YJ, Ma XB, Gong JL, AIChE J., 59(10), 3586 (2013)
Hejazi B, Grace JR, Bi XT, Mahecha-Botero A, Fuel, 117, 1256 (2014)
Sarkar A, Pan W, Suh D, Huckaby ED, Sun X, Powder Technol., 265, 35 (2014)
Atsonios K, Zeneli M, Nikolopoulos A, Nikolopoulos N, Grammelis P, Kakaras E, Fuel, 153, 371 (2015)
Ayobi M, Shahhosseini S, Behjat Y, J. Taiwan Inst. Chem. E., 45, 421 (2014)
Kunii D, Levenspiel O, Ind. Eng. Chem. Prod. Res. Dev., 7, 481 (1968)
Kunii D, Levenspiel O, Chem. Eng. Sci., 55(20), 4563 (2000)
Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvarez D, AIChE J., 50(7), 1614 (2004)
Alonso M, Rodriguez N, Grasa G, Abanades JC, Chem. Eng. Sci., 64(5), 883 (2009)
Lee DK, Chem. Eng. J., 100(1-3), 71 (2004)
Yoo KY, Shin DY, Park MJ, Korean J. Chem. Eng., 31(9), 1532 (2014)
Alvarez D, Abanades JC, Ind. Eng. Chem. Res., 44(15), 5608 (2005)
Cao CQ, Zhang K, He CC, Zhao YA, Guo QJ, Chem. Eng. Sci., 66(3), 375 (2011)