Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 7, 2015
Accepted November 26, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A pore-scale model for microfibrous ammonia cracking microreactors via lattice Boltzmann method
Research Laboratory of Automotive Fluids and Structures Analysis, Automotive Engineering School, Iran University of Science and Technology, Tehran 16846-13144, Iran
molaeimanesh@iust.ac.ir
Korean Journal of Chemical Engineering, April 2016, 33(4), 1211-1219(9), 10.1007/s11814-015-0263-z
Download PDF
Abstract
Microfibrous microreactors with high reactive surface-to-volume ratio are good choices for ammonia cracking, which is one of the main strategies for CO-free hydrogen production. In the current study, a numerical model based on the lattice Boltzmann method (LBM) is presented to investigate ammonia cracking microreactors with coupled physiochemical thermal processes at the pore scale. Several sets of transport phenomena such as fluid flow, species transport, heat transfer and chemical reaction are taken into account. Moreover, to model the species transport in the ammonia cracking microreactor an active approach is applied for the first time. The model is validated and then employed to simulate the reactive transport in five different microreactors with dissimilar structural parameters. Comparison of the results shows that the fibers orientation is an effective geometric parameter that can greatly influence the hydrogen production efficiency.
Keywords
References
Ehsani M, Gao Y, Gay SE, Emadi A, Modern electric, hybrid electric and fuel cell vehicels, CRC Press, London (2012).
Larminie J, Dicks A, Fuel cell systems explained, Wiley, Chichester (2003).
Wang MM, Li JF, Chen L, Lu Y, Int. J. Hydrog. Energy, 34(4), 1710 (2009)
Worz O, Jackel KP, Richter T, Wolf A, Chem. Eng. Technol., 24(2), 138 (2001)
Jensen KF, Chem. Eng. Sci., 56(2), 293 (2001)
Kolb G, Hessel V, Chem. Eng. J., 98(1-2), 1 (2004)
Karakaya M, Keskin S, Avci AK, Appl. Catal. A: Gen., 411, 114 (2012)
Lerou JJ, Harold MP, Ryley J, Ashmead J, O’Brien TC, Johnson M, Perrotto J, Blaisddell CT, Rensi TA, Nyquist J, in Microsystem technology for chemical and biological microreactors, Ehrfield W, Eds., DECHEMA, New York (1996).
Chiuta S, Everson RC, Neomagus HWJP, van der Gryp P, Bessarabov DG, Int. J. Hydrog. Energy, 38(35), 14968 (2013)
Shin MS, Park N, Park MJ, Jun KW, Ha KS, Chem. Eng. J., 234, 23 (2013)
Shin MS, Park N, Park MJ, Cheon JY, Kang JK, Jun KW, Ha KS, Fuel Process. Technol., 118, 235 (2014)
Shin DY, Ha KS, Park MJ, Kwak G, Lee YJ, Jun KW, Fuel, 158, 826 (2015)
Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30, 329 (1998)
Zeiser T, Lammers P, Klemm E, Li YW, Bernsdorf J, Brenner G, Chem. Eng. Sci., 56(4), 1697 (2001)
Freund H, Zeiser T, Huber F, Klemm E, Brenner G, Durst F, Emig G, Chem. Eng. Sci., 58(3-6), 903 (2003)
Nijemeisland M, Dixon AG, AIChE J., 50(5), 906 (2004)
Sullivan SP, Sani FM, Johns ML, Gladden LF, Chem. Eng. Sci., 60(12), 3405 (2005)
Manjhi N, Verma N, Salem K, Mewes D, Chem. Eng. Sci., 61(8), 2510 (2006)
Kao PH, Ren TF, Yang RJ, Int. J. Heat Mass Transf., 50(21-22), 4243 (2007)
Verma N, Salem K, Mewes D, Chem. Eng. Sci., 62(14), 3685 (2007)
Chen L, Kang QJ, He YL, Tao WQ, Int. J. Hydrog. Energy, 37(19), 13943 (2012)
Sukop MC, Thorne DT, Lattice Boltzmann Modeling, An Introduction for Geoscientists and Engineers, Springer, Heidelberg (2007).
Satoh A, Introduction to practice of molecular simulation, Elsevier Inc., Amsterdam (2011).
Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511 (1954)
Mohamad AA, Lattice Boltzmann Method-Fundamentals and Engineering Applications with Computer Codes, Springer, Heidelberg (2011).
Succi S, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond Numerical Mathematics And Scientific Computation, Clarendon Press, Oxford (2001).
Gunstensen AK, Rothman DH, Zaleski S, Zanetti G, Phys. Rev., A, 43, 4320 (1991)
Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
Swift MR, Osborn WR, Yeomans JM, Phys. Rev. Lett., 75, 830 (1995)
Chellappa AS, Fischer CM, Thomson WJ, Appl. Catal. A: Gen., 227(1-2), 231 (2002)
Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207-208, 587 (2012)
Molaeimanesh GR, Akbari MH, J. Power Sources, 258, 89 (2014)
Molaeimanesh GR, Akbari MH, Korean J. Chem. Eng., 32(3), 397 (2015)
Liu Y, Wang H, Li J, Lu Y, Wu H, Xue Q, Chen L, Appl. Catal. A: Gen., 328(1), 77 (2007)
Zou Q, He X, Phys. Fluids, 9, 1591 (1997)
Larminie J, Dicks A, Fuel cell systems explained, Wiley, Chichester (2003).
Wang MM, Li JF, Chen L, Lu Y, Int. J. Hydrog. Energy, 34(4), 1710 (2009)
Worz O, Jackel KP, Richter T, Wolf A, Chem. Eng. Technol., 24(2), 138 (2001)
Jensen KF, Chem. Eng. Sci., 56(2), 293 (2001)
Kolb G, Hessel V, Chem. Eng. J., 98(1-2), 1 (2004)
Karakaya M, Keskin S, Avci AK, Appl. Catal. A: Gen., 411, 114 (2012)
Lerou JJ, Harold MP, Ryley J, Ashmead J, O’Brien TC, Johnson M, Perrotto J, Blaisddell CT, Rensi TA, Nyquist J, in Microsystem technology for chemical and biological microreactors, Ehrfield W, Eds., DECHEMA, New York (1996).
Chiuta S, Everson RC, Neomagus HWJP, van der Gryp P, Bessarabov DG, Int. J. Hydrog. Energy, 38(35), 14968 (2013)
Shin MS, Park N, Park MJ, Jun KW, Ha KS, Chem. Eng. J., 234, 23 (2013)
Shin MS, Park N, Park MJ, Cheon JY, Kang JK, Jun KW, Ha KS, Fuel Process. Technol., 118, 235 (2014)
Shin DY, Ha KS, Park MJ, Kwak G, Lee YJ, Jun KW, Fuel, 158, 826 (2015)
Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30, 329 (1998)
Zeiser T, Lammers P, Klemm E, Li YW, Bernsdorf J, Brenner G, Chem. Eng. Sci., 56(4), 1697 (2001)
Freund H, Zeiser T, Huber F, Klemm E, Brenner G, Durst F, Emig G, Chem. Eng. Sci., 58(3-6), 903 (2003)
Nijemeisland M, Dixon AG, AIChE J., 50(5), 906 (2004)
Sullivan SP, Sani FM, Johns ML, Gladden LF, Chem. Eng. Sci., 60(12), 3405 (2005)
Manjhi N, Verma N, Salem K, Mewes D, Chem. Eng. Sci., 61(8), 2510 (2006)
Kao PH, Ren TF, Yang RJ, Int. J. Heat Mass Transf., 50(21-22), 4243 (2007)
Verma N, Salem K, Mewes D, Chem. Eng. Sci., 62(14), 3685 (2007)
Chen L, Kang QJ, He YL, Tao WQ, Int. J. Hydrog. Energy, 37(19), 13943 (2012)
Sukop MC, Thorne DT, Lattice Boltzmann Modeling, An Introduction for Geoscientists and Engineers, Springer, Heidelberg (2007).
Satoh A, Introduction to practice of molecular simulation, Elsevier Inc., Amsterdam (2011).
Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511 (1954)
Mohamad AA, Lattice Boltzmann Method-Fundamentals and Engineering Applications with Computer Codes, Springer, Heidelberg (2011).
Succi S, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond Numerical Mathematics And Scientific Computation, Clarendon Press, Oxford (2001).
Gunstensen AK, Rothman DH, Zaleski S, Zanetti G, Phys. Rev., A, 43, 4320 (1991)
Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
Swift MR, Osborn WR, Yeomans JM, Phys. Rev. Lett., 75, 830 (1995)
Chellappa AS, Fischer CM, Thomson WJ, Appl. Catal. A: Gen., 227(1-2), 231 (2002)
Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207-208, 587 (2012)
Molaeimanesh GR, Akbari MH, J. Power Sources, 258, 89 (2014)
Molaeimanesh GR, Akbari MH, Korean J. Chem. Eng., 32(3), 397 (2015)
Liu Y, Wang H, Li J, Lu Y, Wu H, Xue Q, Chen L, Appl. Catal. A: Gen., 328(1), 77 (2007)
Zou Q, He X, Phys. Fluids, 9, 1591 (1997)