ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 18, 2015
Accepted November 20, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Inhibition of char deposition using a particle bed in heating section of supercritical water gasification

Department of Mechanical Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8527, Japan 1Division of Energy and Environmental Engineering, Institute of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8527, Japan 2Fukken Co., 2-10-11, Hikarimachi, Higashi-ku Hiroshima-shi, Hiroshima 732-0052, Japan 3Chuden Plant Co., Ltd., 2-3-18, Deshio, Minami-ku Hiroshima-shi, Hiroshima 734-0001, Japan 4The Chugoku Electric Power Company Co., Inc., Kagamiyama, Higashihiroshima-shi, Hiroshima 739-0046, Japan 5Toyo Koatsu Co., Ltd., 2-1-22, Kusunokicho, Nishi-ku Hiroshima-shi, Hiroshima 733-0002, Japan
mat@hiroshima-u.ac.jp
Korean Journal of Chemical Engineering, April 2016, 33(4), 1261-1266(6), 10.1007/s11814-015-0252-2
downloadDownload PDF

Abstract

Supercritical water gasification (SCWG) has attracted attention as a technology for utilizing wet biomass. We used a fluidized bed of alumina particles to prevent blockage of a SCWG reactor. A glucose solution was heated in the reactor with and without fluidized alumina particles. In the absence of alumina particles, char particles formed homogeneously in the reactor, but the use of a fluidized bed resulted in accumulation of char particles at the reactor’s exit rather than inside the reactor. Therefore, the fluidized bed was effective at preventing blockage of the reactor. However, the alumina particles did not remove deposits from the reactor’s walls. Instead, the fluidized bed caused larger char particles to form, preventing their adhesion to the reactor’s wall.

References

Amin S, Reid R, Modell M, Am. Soc. Mech. Eng., 8, 75-ENA (1975)
Yu DH, Aihara M, Antal MJ, Energy Fuels, 7, 574 (1993)
Antal MJ, Allen SG, Schulman D, Xu XD, Divilio RJ, Ind. Eng. Chem. Res., 39(11), 4040 (2000)
Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Antal MJ, Biomass Bioenerg., 29(4), 269 (2005)
Matsumura Y, Yokoyama SY, Biomass Bioenerg., 29(5), 304 (2005)
Chuntanapum A, Matsumura Y, Ind. Eng. Chem. Res., 48(22), 9837 (2009)
Minowa T, Zhen F, Ogi T, J. Supercrit. Fluids, 13(1), 253 (1998)
Chuntanapum A, Yong TLK, Miyake S, Matsumura Y, Ind. Eng. Chem. Res., 47(9), 2956 (2008)
Chuntanapum A, Matsumura Y, Ind. Eng. Chem. Res., 49(9), 4055 (2010)
Chuntanapum A, Shii T, Matsumura Y, J. Chem. Eng. Jpn., 44(6), 431 (2011)
Samanmulya T, Matsumura Y, J. Jpn. Inst. Energy, 92, 894 (2013)
Samanmulya T, Inoue S, Inoue T, Kawai Y, Kubota H, Munetsuna H, Noguchi T, Matsumura Y, J. Jpn. Inst. Energy, 93, 936 (2014)
Sinag A, Kruse A, Schwarzkopf V, Eng. Life Sci., 3, 469 (2003)
Sinag A, Kruse A, Schwarzkopf V, Ind. Eng. Chem. Res., 42(15), 3516 (2003)
Wada Y, Oyama K, Yamasaki T, Uchiyama I, Yamamura Y, Kubota H, Matsumura Y, Minowa T, Noguchi T, Kawai Y, J. Jpn. Inst. Energy, 92, 1159 (2013)
Matsumura Y, Xu X, Antal MJ, Carbon, 35, 819 (1997)
Matsumura Y, Hara S, Kaminaka K, Yamashita Y, Yoshida T, Inoue S, Kawai Y, Minowa T, Noguchi T, Shimizu Y, J. Jpn. Pet. Inst., 56, 1 (2013)
Sealock LJ, Elliott DC, Baker EG, Butner RS, Ind. Eng. Chem. Res., 32, 1535 (1993)
Elliott DC, Hart TR, Neuenschwander GG, Ind. Eng. Chem. Res., 45(11), 3776 (2006)
Elliott DC, Neuenschwander GG, Phelps MR, Hart TR, Zacher AH, Silva LJ, Ind. Eng. Chem. Res., 38(3), 879 (1999)
Elliott DC, Phelps MR, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 33(3), 566 (1994)
Elliott DC, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 32, 1542 (1993)
Elliott DC, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 33(3), 558 (1994)
Minowa T, Fang Z, J. Chem. Eng. Jpn., 31(3), 488 (1998)
Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M, J. Supercrit. Fluids, 17(2), 145 (2000)
Kruse A, Meier D, Rimbrecht P, Schacht M, Ind. Eng. Chem. Fundam., 39, 4842 (2000)
Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355 (2011)
Munetsuna H, Tamai M, Noda Y, Matsumura Y, J. Jpn. Inst. Energy, 89, 1173 (2010)
Matsumura Y, Minowa T, Int. J. Hydrog. Energy, 29(7), 701 (2004)
Erkiaga A, Lopez G, Amutio M, Bilbao J, Olazar M, Fuel Process. Technol., 116, 292 (2013)
Lu YJ, Zhao L, Han Q, Wei LP, Zhang XM, Guo LJ, Wei JJ, Int. J. Multiph. Flow, 49, 78 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로