Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 19, 2015
Accepted December 11, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Using response surface methodology to optimize ultrasound-assisted oxidative desulfurization
Research Institute of Petroleum Industry (RIPI), Gas Department, West Boulevard of Azadi Stadium, P. O. Box 14665-1998, Tehran, Iran 1School of Chemical Engineering, Iran University of Science and Technology, P. O. Box 16765-163, Tehran, Iran
inspirationj82@gmail.com
Korean Journal of Chemical Engineering, April 2016, 33(4), 1286-1295(10), 10.1007/s11814-015-0276-7
Download PDF
Abstract
Latest strict environmental regulations have restricted the sulfur content of diesel fuels; therefore, deep desulfurization of fuels is required. Ultrasound-assisted oxidative desulfurization (UAOD) is an alternative for conventional desulfurization methods which can remove sulfur compounds from fuels under mild process conditions. In this study, UAOD of gasoil using tungstophosphoric acid catalyst and tetraoctylammonium bromide as a phase transfer agent in the presence of hydrogen peroxide as an oxidant was optimized. The optimal design of experiments was generated based on central composite face-centered design of Response surface methodology (RSM) to study effects of four process variables such as oxidant volume, mass of catalyst, mass of phase transfer agent and the ultrasonic wave amplitude on the sulfur conversion of gasoil. In addition, a predictive model of sulfur conversion was obtained based on RSM. The optimal values of process variables were evaluated to be 21.96 mL of oxidant, 1 gr of catalyst and 0.1 gr of phase transfer agent to achieve the maximum sulfur conversion of 95.92%.
Keywords
References
Mei H, Mei BW, Yen TF, Fuel, DOI:10.1016/S0016-2361(02)00318-6., 82(4), 405 (2003)
Farag H, J. Colloid Interface Sci., DOI:10.1016/j.jcis.2010.04.022., 384(1), 219 (2010)
Zhang G, Yu F, Wang R, Pet. Coal, 51(3), 196 (2009)
Mondal S, Hangun-Balkir Y, Alexandrova L, Link D, Howard B, Zandhuis P, Cugini A, Horwitz CP, Collins TJ, Catal. Today, DOI:10.1016/j.cattod.2006.06.025., 116(4), 554 (2006)
Liu K, Song C, Subraman V, Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, New Jersey (2009).
Otsuki S, Nonaka T, Takashima N, Qian WH, Ishihara A, Imai T, Kabe T, Energy Fuels, DOI:10.1021/ef000096i., 14(6), 1232 (2000)
Smith MB, Organic Synthesis, Third Ed., Academic Press, Elsevier Inc. (2011).
Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG, J. Chem. Technol. Biotechnol., 85(7), 879 (2010)
Sundararaman R, Ma XL, Song CS, Ind. Eng. Chem. Res., DOI:10.1021/ie901812r., 49(12), 5561 (2010)
Javadli R, Klerk AD, Appl. Petrochem. Res., DOI:10.1007/s13203-012-0006-6., 1, 3 (2012)
Wang DH, Qian EWH, Amano H, Okata K, Ishihara A, Kabe T, Appl. Catal. A: Gen., DOI:10.1016/S0926-860X(03)00528-3., 253(1), 91 (2003)
Javadli R, Autoxidation for Pre-refining of Oil Sands, in: Chemical and Materials Engineering Department, University of Alberta, Canada (2011).
Fox BR, Investigations into the oxidative desulfurization activity in a film-shear reactor, the source of enhanced reactivity, and otherpotential applications, in: Department of Chemistry, University of Oregon, the US (2011).
Xu X, Moulijn JA, Ito E, Wagemans R, Makkee M, Chem. Sus. Chem., DOI:10.1002/cssc.200800109., 1(10), 817 (2008)
Wan M, Yen T, Appl. Catal. A: Gen., DOI:10.1016/j.apcata.2006.12.008., 319(1), 237 (2007)
Yen TF, Mei H, Lu SH, in, US Patent, US6402939 B1 (2002).
Deshpande A, Bassi A, Prakash A, Energy Fuels, DOI:10.1021/ef0340965., 19(1), 28 (2005)
Mello PA, Duarte FA, Nunes MAG, Alencar MS, Moreira EM, Korn M, Dressler VL, Flores EMM, Ultrason. Sonochem., DOI:10.1016/j.ultsonch.2009.03.002., 16(6), 732 (2009)
Wu Z, Ondruschka B, Ultrason. Sonochem., DOI:10.1016/j.ultsonch.2009.11.005., 17(6), 1027 (2010)
Chen T, Shen Y, Lee W, Lin C, Wan M, J. Clean Prod., DOI:10.1016/j.jclepro.2010.07.019., 18(18), 1850 (2010)
Wan M, Biel LC, Lu M, Leon R, Arco S, Desalin. Water Treat., DOI:10.1080/19443994.2012.696802., 47(1-3), 96 (2012)
Duarte FA, Mello PD, Bizzi CA, Nunes MAG, Moreira EM, Alencar MS, Motta HN, Dressler VL, Flores EMM, Fuel, DOI:10.1016/j.fuel.2011.01.030., 90(6), 2158 (2011)
Tang Q, Lin S, Cheng Y, Liu S, Xiong J, Ultrason. Sonochem., DOI:10.1016/j.ultsonch.2013.02.002., 20(5), 1168 (2013)
Jose N, Sengupta S, Basu JK, Fuel, DOI:10.1016/j.fuel.2010.09.026., 90(2), 626 (2011)
Abghari SZ, Shokri S, Baloochi B, Marvast MA, Ghanizadeh S, Behroozi A, Korean J. Chem. Eng., DOI:10.1007/s11814-010-0325-1., 28(1), 93 (2011)
Shayegan Z, Razzaghi M, Niaei A, Salari D, Tabar MTS, Akbari AN, Korean J. Chem. Eng., DOI:10.1007/s11814-013-0097-5., 30(9), 1751 (2013)
Hinkelmann K, Kempthorne O, Advanced Experimental Design in: Design and Analysis of Experiments, Wiley, Hoboken, New Jersey (2005).
Narimani E, Shahhoseini S, Appl. Therm. Eng., DOI:10.1016/j.applthermaleng.2010.08.031., 31(2-3), 188 (2011)
Ghosh S, Rao CR, in: Handbook of Statistics, Elsevier Science Publishing, Amsterdam (1996).
Hasan SDM, Melo DNC, Filho RM, Chem. Eng. Process., DOI:10.1016/j.cep.2004.05.007., 44(3), 335 (2005)
Bradley N, Response Surface Methodology, in: Department of Mathematical Sciences, Indiana University of South Bend, the US (2007).
Daoud W, Ebadi T, Fahimifar A, Korean J. Chem. Eng., DOI:10.1007/s11814-014-0337-3., 32(6), 1119 (2015)
Myers RH, Montgomery DC, Anderson-Cook CM, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Third Ed., John Wiley & Sons, Hoboken, New Jersey (2009).
Kavoshi L, Hatamipour MS, Rahimi A, Chem. Eng. Technol., DOI:10.1002/ceat.201200304., 36(3), 500 (2013)
Zhao JZ, Jin BS, Zhong ZP, J. Hazard. Mater., DOI:10.1016/j.jhazmat.2007.01.046., 147(1-2), 363 (2007)
Mahdizadeh F, Eskandarian M, Zabarjadi J, Ehsani A, Afshar A, Korean J. Chem. Eng., DOI:10.1007/s11814-013-0174-9., 31(1), 74 (2014)
Kafuku G, Tan KT, Lee KT, Mbarawa M, Chem. Eng. Technol., DOI:10.1002/ceat.201100204., 34(11), 1827 (2011)
Cheynier V, Feinberg M, Chararas C, Ducauze C, Appl. Environ. Microbiol., 45(2), 634 (1983)
Chun SY, An SW, Lee SJ, Kim JT, Chang SW, Korean J. Chem. Eng., DOI:10.1007/s11814-014-0027-1., 31(6), 994 (2014)
Huang L, Lu Z, Yuan Y, Lu F, Bie X, J. Ind. Microbiol. Biotechnol., DOI:10.1007/s10295-005-0041-8., 33(1), 55 (2006)
Narimani E, Kadijani JA, Chem. Eng. Technol., DOI:10.1002/ceat.201300123., 37(2), 229 (2014)
Narimani E, Kadijani JA, Pet. Coal, 55(4), 330 (2013)
Loning JM, Horst C, Hoffmann U, Ultrason. Sonochem., 9(3), 169 (2002)
Farag H, J. Colloid Interface Sci., DOI:10.1016/j.jcis.2010.04.022., 384(1), 219 (2010)
Zhang G, Yu F, Wang R, Pet. Coal, 51(3), 196 (2009)
Mondal S, Hangun-Balkir Y, Alexandrova L, Link D, Howard B, Zandhuis P, Cugini A, Horwitz CP, Collins TJ, Catal. Today, DOI:10.1016/j.cattod.2006.06.025., 116(4), 554 (2006)
Liu K, Song C, Subraman V, Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, New Jersey (2009).
Otsuki S, Nonaka T, Takashima N, Qian WH, Ishihara A, Imai T, Kabe T, Energy Fuels, DOI:10.1021/ef000096i., 14(6), 1232 (2000)
Smith MB, Organic Synthesis, Third Ed., Academic Press, Elsevier Inc. (2011).
Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG, J. Chem. Technol. Biotechnol., 85(7), 879 (2010)
Sundararaman R, Ma XL, Song CS, Ind. Eng. Chem. Res., DOI:10.1021/ie901812r., 49(12), 5561 (2010)
Javadli R, Klerk AD, Appl. Petrochem. Res., DOI:10.1007/s13203-012-0006-6., 1, 3 (2012)
Wang DH, Qian EWH, Amano H, Okata K, Ishihara A, Kabe T, Appl. Catal. A: Gen., DOI:10.1016/S0926-860X(03)00528-3., 253(1), 91 (2003)
Javadli R, Autoxidation for Pre-refining of Oil Sands, in: Chemical and Materials Engineering Department, University of Alberta, Canada (2011).
Fox BR, Investigations into the oxidative desulfurization activity in a film-shear reactor, the source of enhanced reactivity, and otherpotential applications, in: Department of Chemistry, University of Oregon, the US (2011).
Xu X, Moulijn JA, Ito E, Wagemans R, Makkee M, Chem. Sus. Chem., DOI:10.1002/cssc.200800109., 1(10), 817 (2008)
Wan M, Yen T, Appl. Catal. A: Gen., DOI:10.1016/j.apcata.2006.12.008., 319(1), 237 (2007)
Yen TF, Mei H, Lu SH, in, US Patent, US6402939 B1 (2002).
Deshpande A, Bassi A, Prakash A, Energy Fuels, DOI:10.1021/ef0340965., 19(1), 28 (2005)
Mello PA, Duarte FA, Nunes MAG, Alencar MS, Moreira EM, Korn M, Dressler VL, Flores EMM, Ultrason. Sonochem., DOI:10.1016/j.ultsonch.2009.03.002., 16(6), 732 (2009)
Wu Z, Ondruschka B, Ultrason. Sonochem., DOI:10.1016/j.ultsonch.2009.11.005., 17(6), 1027 (2010)
Chen T, Shen Y, Lee W, Lin C, Wan M, J. Clean Prod., DOI:10.1016/j.jclepro.2010.07.019., 18(18), 1850 (2010)
Wan M, Biel LC, Lu M, Leon R, Arco S, Desalin. Water Treat., DOI:10.1080/19443994.2012.696802., 47(1-3), 96 (2012)
Duarte FA, Mello PD, Bizzi CA, Nunes MAG, Moreira EM, Alencar MS, Motta HN, Dressler VL, Flores EMM, Fuel, DOI:10.1016/j.fuel.2011.01.030., 90(6), 2158 (2011)
Tang Q, Lin S, Cheng Y, Liu S, Xiong J, Ultrason. Sonochem., DOI:10.1016/j.ultsonch.2013.02.002., 20(5), 1168 (2013)
Jose N, Sengupta S, Basu JK, Fuel, DOI:10.1016/j.fuel.2010.09.026., 90(2), 626 (2011)
Abghari SZ, Shokri S, Baloochi B, Marvast MA, Ghanizadeh S, Behroozi A, Korean J. Chem. Eng., DOI:10.1007/s11814-010-0325-1., 28(1), 93 (2011)
Shayegan Z, Razzaghi M, Niaei A, Salari D, Tabar MTS, Akbari AN, Korean J. Chem. Eng., DOI:10.1007/s11814-013-0097-5., 30(9), 1751 (2013)
Hinkelmann K, Kempthorne O, Advanced Experimental Design in: Design and Analysis of Experiments, Wiley, Hoboken, New Jersey (2005).
Narimani E, Shahhoseini S, Appl. Therm. Eng., DOI:10.1016/j.applthermaleng.2010.08.031., 31(2-3), 188 (2011)
Ghosh S, Rao CR, in: Handbook of Statistics, Elsevier Science Publishing, Amsterdam (1996).
Hasan SDM, Melo DNC, Filho RM, Chem. Eng. Process., DOI:10.1016/j.cep.2004.05.007., 44(3), 335 (2005)
Bradley N, Response Surface Methodology, in: Department of Mathematical Sciences, Indiana University of South Bend, the US (2007).
Daoud W, Ebadi T, Fahimifar A, Korean J. Chem. Eng., DOI:10.1007/s11814-014-0337-3., 32(6), 1119 (2015)
Myers RH, Montgomery DC, Anderson-Cook CM, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Third Ed., John Wiley & Sons, Hoboken, New Jersey (2009).
Kavoshi L, Hatamipour MS, Rahimi A, Chem. Eng. Technol., DOI:10.1002/ceat.201200304., 36(3), 500 (2013)
Zhao JZ, Jin BS, Zhong ZP, J. Hazard. Mater., DOI:10.1016/j.jhazmat.2007.01.046., 147(1-2), 363 (2007)
Mahdizadeh F, Eskandarian M, Zabarjadi J, Ehsani A, Afshar A, Korean J. Chem. Eng., DOI:10.1007/s11814-013-0174-9., 31(1), 74 (2014)
Kafuku G, Tan KT, Lee KT, Mbarawa M, Chem. Eng. Technol., DOI:10.1002/ceat.201100204., 34(11), 1827 (2011)
Cheynier V, Feinberg M, Chararas C, Ducauze C, Appl. Environ. Microbiol., 45(2), 634 (1983)
Chun SY, An SW, Lee SJ, Kim JT, Chang SW, Korean J. Chem. Eng., DOI:10.1007/s11814-014-0027-1., 31(6), 994 (2014)
Huang L, Lu Z, Yuan Y, Lu F, Bie X, J. Ind. Microbiol. Biotechnol., DOI:10.1007/s10295-005-0041-8., 33(1), 55 (2006)
Narimani E, Kadijani JA, Chem. Eng. Technol., DOI:10.1002/ceat.201300123., 37(2), 229 (2014)
Narimani E, Kadijani JA, Pet. Coal, 55(4), 330 (2013)
Loning JM, Horst C, Hoffmann U, Ultrason. Sonochem., 9(3), 169 (2002)