ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 15, 2015
Accepted November 17, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Characterization of high-alumina coal fly ash based silicate material and its adsorption performance to CO2

College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
tadzhang@pku.edu.cn
Korean Journal of Chemical Engineering, April 2016, 33(4), 1369-1379(11), 10.1007/s11814-015-0243-3
downloadDownload PDF

Abstract

Silicate material prepared from high-alumina coal fly ash (HACFA) was characterized by using XRD, SEM, FTIR spectroscopy, TGA-DSC, and elemental analysis. These spectral results show that the silicate material is mainly composed of eight elements--O, C, Si, Ca, Na, Mg, Al, and Fe, which exist as the formations of Ca2+, Na+, Mg2+, Al3+, Fe3+, SiO3 2-, and CO3 2-, and some adsorbed water and crystal water are determined in the silicate material. The material with surface area of 117.12m2/g shows a faveolate structure, and a pore size distribution of silicate material is calculated at 11.01 nm from the nitrogen desorption isotherm using the BJH model. When the material was used for CO2 adsorption at T=323.15 K and flow rate=95mL/min with 15.79% (vol) CO2, a dynamic adsorption capacity of CO2 on the surface of silicate material was found at 8.67mg/g and the adsorption values decreased weakly after seventeen recycling times. The investigation of dynamic adsorption behavior shows that the silicate material presents similar adsorption properties with commercial active carbon and stronger adsorption properties than commercial diatomite.

References

Hofmann DJ, Butler JH, Tans PP, Atmos. Environ., 43, 2084 (2009)
Pires JCM, Martins FG, Alvim-Ferraz MCM, Simoes M, Chem. Eng. Res. Des., 89(9A), 1446 (2011)
Li HL, Jakobsen JP, Wilhelmsen O, Yan JY, Appl. Energy, 88(11), 3567 (2011)
Nuchitprasittichai A, Cremaschi S, Int. J. Greenh. Gas Con., 13, 34 (2013)
Hiyoshi N, Yogo K, Yashima T, Microporous Mesoporous Mater., 84, 357 (2005)
Tan LS, Shariff AM, Lau KK, Bustam MA, J. Ind. Eng. Chem., 18(6), 1874 (2012)
Adewole JK, Ahmad AL, Ismail S, Leo CP, Int. J. Greenh. Gas Con., 17, 46 (2013)
Berstad D, Anantharaman R, Neksa P, Int. J. Refrig., 36, 1403 (2013)
Knudsen JN, Jensen JN, Vilhelmsen PJ, Biede O, Energy Procedia, 1, 783 (2009)
Bounaceur R, Lape N, Roizard D, Vallieres C, Favre E, Energy, 31(14), 2556 (2006)
Hart A, Gnanendran N, Energy Procedia, 1, 697 (2009)
ZareNezhad B, Hosseinpour N, Energy Conv. Manag., 50(6), 1491 (2009)
Mulgundmath VP, Jones RA, Tezel FH, Thibault J, Sep. Purif. Technol., 85, 17 (2012)
Himeno S, Komatsu T, Fujita S, J. Chem. Eng. Data, 50(2), 369 (2005)
Olajire AA, Energy, 35(6), 2610 (2010)
Plaza MG, Pevida C, Arias B, Fermoso J, Casal MD, Martin CF, Rubiera F, Pis JJ, Fuel, 88(12), 2442 (2009)
Rashidi NA, Yusup S, Hameed BH, Energy, 61, 440 (2013)
Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 19(3), 1153 (2005)
Majchrzak-Kuceba I, Nowak W, Thermochim. Acta, 437(1-2), 67 (2005)
Stewart C, Hessami MA, Energy Conv. Manag., 46(3), 403 (2005)
Yao ZT, Xia MS, Sarker PK, Chen T, Fuel, 120, 74 (2014)
Ilic M, Cheeseman C, Sollars C, Knight J, Fuel, 82(3), 331 (2003)
Manoharan V, Yunusa IAM, Loganathan P, Lawrie R, Skilbeck G, Burchett MD, Murray BR, Eamus D, Fuel, 89(11), 3498 (2010)
Lee H, Ha HS, Lee CH, Lee YB, Kim PJ, Bioresour. Technol., 97(13), 1490 (2006)
Erol M, Kucukbayrak S, Ersoy-Mericboyu A, Fuel, 87(7), 1334 (2008)
Erol M, Kucukbayrak S, Ersoy-Mericboyu A, J. Hazard. Mater., 153(1-2), 418 (2008)
Fang J, Qin GT, Wei W, Zhao XQ, Sep. Purif. Technol., 80(3), 585 (2011)
Jain D, Khatri C, Rani A, Fuel Process. Technol., 91(9), 1015 (2010)
Saputra E, Muhammad S, Sun HQ, Ang HM, Tade MO, Wang SB, Catal. Today, 190(1), 68 (2012)
Xuan XP, Yue CT, Li SY, Yao Q, Fuel, 82(5), 575 (2003)
Wang SB, Wu HW, J. Hazard. Mater., 136(3), 482 (2006)
Li Y, Zhang F, Xiu F, Sci. Total Environ., 407, 5780 (2009)
Niewiadomski M, Hupka J, Bokotko R, Miller JD, Fuel, 78(2), 161 (1999)
Chareonpanich M, Namto T, Kongkachuichay P, Limtrakul J, Fuel Process. Technol., 85(15), 1623 (2004)
Yao ZT, Ye Y, Xia MS, Environ. Prog. Sustain., 32, 790 (2013)
Wu DY, Zhang BH, Yan L, Kong HN, Wang XZ, Int. J. Miner. Process., 80(2-4), 266 (2006)
Hernandez-Exposito A, Chimenos JM, Fernandez AI, Font O, Querol X, Coca P, Pena FG, Chem. Eng. J., 118(1-2), 69 (2006)
Torralvo FA, Fernandez-Pereira C, Miner. Eng., 24(1), 35 (2011)
Shemi A, Mpana RN, Ndlovu S, van Dyk LD, Sibanda V, Seepe L, Miner. Eng., 34, 30 (2012)
Dinda S, Sep. Purif. Technol., 109, 64 (2013)
Sun JM, Zhang ZJ, Chen G, Yan SY, Huo QZ, Wu LC, The method of active calcium silicate in the produce process of Al2O3 using high-alumina fly ash. CN. Patent. CN102249253A (2011).
Zhang ZJ, Sun JM, Cao HF, Zhang XY, Wang YW, Yao Q, A synthetical method of calcium silicate powder using highalumina fly ash. CN. Patent. CN101591023 (2008).
Yadav RR, Mudliarb SN, Shekh AY, Fulke AB, Devi SS, Krishnamurthi K, Juwarkar A, Chakrabarti T, Process Biochem., 47, 585 (2012)
Mogami Y, Yamazaki S, Matsuno S, Matsui K, Noda Y, Takegoshi K, Cement Concrete Res., 66, 115 (2014)
Zhang YQ, Radha AV, Navrotsky A, Geochim. Cosmochim. Acta, 115, 92 (2013)
Tien P, Chau LK, Chem. Mater., 11, 2141 (1999)
Zaitan H, Bianchi D, Achak O, Chafik T, J. Hazard. Mater., 153(1-2), 852 (2008)
Nyquist RA, Putzig CL, Kagel RO, Anne Leugers M. Infrared spectra of inorganic compounds. Michigan: Academic Press (1971).
Tsoncheva T, Issa G, Blasco T, Dimitrov M, Popova M, Hernandez S, Kovacheva D, Atanasova G, Nieto JML, Appl. Catal. A: Gen., 453, 1 (2013)
Kok MV, Energy Sources, 24, 907 (2005)
Ayari F, Srasra E, Trabelsi-Ayadi M, Desalination, 185(1-3), 391 (2005)
Sevilla M, Fuertes AB, J. Colloid Interface Sci., 366(1), 147 (2012)
Ucun H, Bayhan YK, Kaya Y, J. Hazard. Mater., 153(1-2), 52 (2008)
Fan T, Liu YG, Feng BY, Zeng GM, Yang CP, Zhou M, Zhou HZ, Tan ZF, Wang X, J. Hazard. Mater., 160(2-3), 655 (2008)
Tuzen SM, Uluozlu OD, Soylak M, Biochem. Chem. Eng. J., 37, 151 (2007)
Borah JM, Sarma J, Mahiuddin S, Colloids Surf. A: Physicochem. Eng. Asp., 387, 50 (2011)
Serna-Guerrero R, Sayari A, Chem. Eng. J., 161(1-2), 182 (2010)
Baltrusaitis J, Grassian VH, J. Phys. Chem. B, 109(25), 12227 (2005)
Wahby A, Ramos-Fernandez JM, Martinez-Escandell M, Sepulveda-Escribano A, Silvestre-Albero J, Rodriguez-Reinoso F, ChemSusChem, 3, 974 (2010)
Sevilla M, Valle-Vigon P, Fuertes AB, Adv. Funct. Mater., 21(14), 2781 (2011)
Sevilla M, Fuertes AB, Energy Environ. Sci., 4, 1765 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로