ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 19, 2015
Accepted December 11, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Vapor pressure and Flory-Huggins interaction parameters in binary polymeric solutions

Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
miladasgarpour@ut.ac.ir
Korean Journal of Chemical Engineering, April 2016, 33(4), 1402-1407(6), 10.1007/s11814-015-0277-6
downloadDownload PDF

Abstract

This communication reports two unique relationships for (1) Flory-Huggins interaction parameter (χ) and (2) vapor pressure of solvent (P), which explicitly show their composition dependency. There is no empirical constant in the proposed relationships, and no trial and error and/or data-fitting optimization is required for determination and/or correlation of vapor pressure and Flory-Huggins interaction parameter. A straightforward computational technique for implementation of models is provided. For a number of systems, the calculated data have been compared and evaluated against experimental ones and the reliability and accuracy of proposed relationships was assured. IARD (%) values on the order of 0.05 demonstrate the accuracy of the proposed method.

References

Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria 3ed., Prentice Hall (1998).
Keshavarz L, Khansary MA, Shirazian S, Polymer, 73, 1 (2015)
Mulder M, Basic Principles of Membrane Technology, 2 Ed., Springer Netherlands, Kluwer, Netherlands, Dordrecht (1996).
Mulder M, MEMBRANE PREPARATION | Phase Inversion Membranes, Elsevier Science Ltd. (2000).
Wohlfarth C, CRC Handbook of Thermodynamic Data of Copolymer Solutions, CRC Press (2001).
Wohlfarth C, CRC Handbook of Thermodynamics Data of Polymer Solutions at Elevated Pressures, CRC Press (2005).
Wohlfarth C, CRC Handbook of Liquid-liquid Equilibrium Data of Polymer Solutions, CRC Press (2007).
Bercea M, Eckelt J, Wolf BA, Ind. Eng. Chem. Res., 48(9), 4603 (2009)
Ruzette AVG, Mayes AM, Macromolecules, 34(6), 1894 (2001)
Khansary MA, Aroon MA, Fuel, 140, 810 (2015)
Geveke DJ, Danner RP, Polym. Eng. Sci., 31, 1527 (1991)
Barth C, Wolf BA, Polymer, 41(24), 8587 (2000)
Cao B, Henson MA, Annals of the New York Academy of Sciences, 984, 370 (2003)
Khansary MA, Aroon MA, Fuel, 142, 306 (2015)
Mejia A, Segura H, Fuel, 140, 812 (2015)
Polymer Thermodynamics: Liquid Polymer-Containing Mixtures, Springer Verlag Berlin Heidelberg (2011).
Krevelen DWV, Nijenhuis KT, Properties of Polymers:Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4 Ed., Elsevier (2008).
Sanchez I, Stone M, Statistical Thermodynamics of Polymer Solutions and Blends, Wiley (2000).
CRC Handbook of Chemistry and Physics, 90 Ed., CRC Press (2010).
Danner RP, H. Martin S, Handbook of Polymer Solution Thermodynamics, American Institute of Chemical Engineers, 345 East 47 Street, New York (1993).
Kontogeorgis GM, Folas GK, Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories, 1 Ed., Wiley (2010).
Poling BE, Prausnitz JM, O’Connell JP, Properties of Gases and Liquids, 4 Ed., McGraw-Hill Professional (1987).
Sandler SI, Models for Thermodynamic and Phase Equilibria Calculations, CRC Press (1993).
Boudouris D, Constantinou L, Panayiotou C, Ind. Eng. Chem. Res., 36(9), 3968 (1997)
Rodgers PA, J. Appl. Polym. Sci., 48, 1061 (1993)
Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, 2 Ed., Wiley (2006).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로