ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 29, 2015
Accepted December 2, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Accurate measurement of phase equilibria and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl for potential application in desalination

School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea 1Offshore Plant Resources R&D Center, Korea Institute of Industrial Technology, Busan 46749, Korea
Korean Journal of Chemical Engineering, April 2016, 33(4), 1425-1430(6), 10.1007/s11814-015-0268-7
downloadDownload PDF

Abstract

Phase equilibria, structure identification, and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl are investigated for potential application in desalination. To verify the influence of NaCl on the thermodynamic hydrate stability of the HFC-134a hydrate, the three-phase (hydrate (H) - liquid water (LW) - vapor (V)) equilibria of the HFC-134a+NaCl (0, 3.5, and 8.0 wt%)+water systems are measured by both a conventional isochoric (pVT) method and a stepwise differential scanning calorimeter (DSC) method. Both pVT and DSC methods demonstrate reliable and consistent hydrate phase equilibrium points of the HFC-134a hydrates in the presence of NaCl. The HFC-134a hydrate is identified as sII via powder X-ray diffraction. The dissociation enthalpies (ΔHd) of the HFC-134a hydrates in the presence of NaCl are also measured with a high pressure micro-differential scanning calorimeter. The salinity results in significant thermodynamic inhibition of the HFC-134a hydrates, whereas it has little effect on the dissociation enthalpy of the HFC-134a hydrates. The experimental results obtained in this study can be utilized as foundational data for the hydrate-based desalination process.

References

Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, CRC Press/Taylor & Francis, Boca Raton, FL (2008).
Giavarini C, Hester K, Gas Hydrates: Immense Energy Potential and Environmental Challenges, Springer, London (2011).
Linga P, Adeyemo A, Englezos P, Environ. Sci. Technol., 42, 315 (2007)
Watanabe S, Takahashi S, Mizubayashi H, Murata S, Murakami H, Proceedings of the 6th International Conference on Gas Hydrates, 6 (2008).
Corak D, Barth T, Hoiland S, Skodvin T, Larsen R, Skjetne T, Desalination, 278(1-3), 268 (2011)
Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 36(3), 1394 (2011)
Park S, Lee S, Lee Y, Seo Y, Environ. Sci. Technol., 47, 7571 (2013)
Han S, Shin JY, Rhee YW, Kang SP, Desalination, 354, 17 (2014)
Lee Y, Kim Y, Seo Y, Environ. Sci. Technol., 49, 8899 (2015)
Kim S, Kang SP, Seo Y, Chem. Eng. J., 276, 205 (2015)
Lee H, Ryu H, Lim JH, Kim JO, Lee JD, Kim S, Desalin. Water Treat., DOI:10.1080/19443994.2015.1049405. (2015)
Cha JH, Seol Y, ACS Sustainable Chem. Eng., 1, 1218 (2013)
Seo Y, Tajima H, Yamasaki A, Takeya S, Ebinuma T, Kiyono F, Environ. Sci. Technol., 38, 4635 (2004)
Cha I, Lee S, Lee JD, Lee GW, Seo Y, Environ. Sci. Technol., 44, 6117 (2010)
Seo Y, Moon D, Lee C, Park JW, Kim BS, Lee GW, Dotel P, Lee JW, Cha M, Yoon JH, Environ. Sci. Technol., 49, 6045 (2015)
Liang D, Guo K, Wang R, Fan S, Fluid Phase Equilib., 187, 61 (2001)
Akiya T, Shimazaki T, Oowa M, Matsuo M, Yoshida Y, Int. J. Therm., 20, 1753 (1999)
Hashimoto S, Makino T, Inoue Y, Ohgaki K, J. Chem. Eng. Data, 55(11), 4951 (2010)
Takeya S, Hori A, Hondoh T, Uchida T, J. Phys. Chem. B, 104(17), 4164 (2000)
Buchanan P, Soper AK, Thompson H, Westacott RE, Creek JL, Hobson G, Koh CA, J. Chem. Phys., 123, 164507 (2005)
Hakvoort G, J. Therm. Anal. Calorim., 41, 1551 (1994)
Gupta A, Lachance J, Sloan ED, Koh CA, Chem. Eng. Sci., 63(24), 5848 (2008)
Seo Y, Lee H, J. Phys. Chem. B, 106(37), 9668 (2002)
Lee S, Lee Y, Park S, Kim Y, Lee JD, Seo Y, J. Phys. Chem. B, 116, 9075 (2012)
Lee S, Lee Y, Lee J, Lee H, Seo Y, Environ. Sci. Technol., 47, 13184 (2013)
Lee Y, Lee S, Lee J, Seo Y, Chem. Eng. J., 246, 20 (2014)
Lee Y, Kim Y, Lee J, Lee H, Seo Y, Appl. Energy, 150, 120 (2015)
Sugahara T, Murayama S, Hashimoto S, Ohgaki K, Fluid Phase Equilib., 233(2), 190 (2005)
Mohammadi AH, Anderson R, Tohidi B, AIChE J., 51(10), 2825 (2005)
Uchida T, Ohmura R, Ikeda IY, Nagao J, Takeya S, Hori A, J. Phys. Chem. B, 110(10), 4583 (2006)
Kang SP, Lee JW, Ryu HJ, Fluid Phase Equilib., 274(1-2), 68 (2008)
Seo Y, Kang SP, Lee S, Lee H, J. Chem. Eng. Data, 53(12), 2833 (2008)
Lee S, Lee Y, Park S, Seo Y, J. Chem. Eng. Data, 55(12), 5883 (2010)
Tohidi B, Burgass R, Danesh A, Ostergaard K, Todd A, Ann. N.Y. Acad. Sci., 912, 924 (2000)
Mohammad-Taheri M, Moghaddam AZ, Nazari K, Zanjani NG, Fluid Phase Equilib., 338, 257 (2013)
Cha M, Hu Y, Sum AK, Fluid Phase Equilib., In Press (2015).
Dalmazzone D, Kharrat M, Lachet V, Fouconnier B, Clausse D, J. Therm. Anal. Calorim., 70, 493 (2002)
Lee S, Park S, Lee Y, Lee J, Lee H, Seo Y, Langmuir, 27(17), 10597 (2011)
Lafond PG, Olcott KA, Sloan ED, Koh CA, Sum AK, J. Chem. Thermodyn., 48, 1 (2012)
Lin W, Dalmazzone D, Furst W, Delahaye A, Fournaison L, Clain P, J. Chem. Thermodyn., 61, 132 (2013)
Lee S, Seo Y, Energy Fuels, 24, 6074 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로