Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 26, 2015
Accepted November 6, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Characterization of lithium tetrafluoroborate and N-methylacetamide complex as electric and ionic conductors
School of Chemical Engineering & Materials Science, Chung-Ang University, 221, Heulsuk-dong, Dongjak-gu, Seoul 06911, Korea
Korean Journal of Chemical Engineering, April 2016, 33(4), 1441-1446(6), 10.1007/s11814-015-0235-3
Download PDF
Abstract
A complex of lithium tetrafluoroborate (LiBF4) and N-methylacetamide was prepared and investigated. Both LiBF4 and N-methylacetamide are solid at room temperature, but their mixture has liquid- or solid phase at room temperature, depending on the composition. When the complex is liquid, the complex has ionic conductivity. But if the complex is solid, it has electric conductivity. The room temperature ionic conductivities of some compositions in propylene carbonate of the complex exceed 6mS/cm. Room temperature electric conductivity of the complex is 5.025×10-3 mS/cm2. In addition, supercapacitors were constructed and tested using the above-mentioned complex electrolyte. The electrochemical properties of the complex and the supercapacitors were evaluated with cyclic voltammetry, ac impedance spectroscopy, etc. The supercapacitors with this complex show good electrochemical properties in specific capacitance, cycling performances.
References
Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallance GG, MacFarlane DR, Forsyth SA, Forsyth M, Science, 297, 983 (2002)
Zhang SM, Hou YW, Huang WG, Shan YK, Electrochim. Acta, 50(20), 4097 (2005)
Welton T, Chem. Rev., 99(8), 2071 (1999)
Sato T, Masud G, Takagi K, Electrochim. Acta, 49, 3603 (2003)
Matsumoto H, Sakaebe H, Tatsumi K, J. Power Sources, 146(1-2), 45 (2005)
Howlett PC, MacFarlane DR, Hollenkamp AF, Electrochem. Solid State Lett., 7(5), A97 (2004)
Sakaebe H, Matsumoto H, Tatsumi K, J. Power Sources, 146(1-2), 693 (2005)
Koura N, Etoh K, Idemoto Y, Matsumoto F, Chem. Lett., 12, 1320 (2001)
Fung YS, Zhou RQ, J. Power Sources, 81, 891 (1999)
Nakagawa H, Izuchi S, Kuwana K, Nukuda T, Aihara Y, J. Electrochem. Soc., 150(6), A695 (2003)
Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH, J. Mater. Chem., 22, 767 (2012)
Jiang H, Ma J, Li CZ, Adv. Mater., 24(30), 4197 (2012)
Miller JR, Burke AF, Interface, 17, 53 (2008)
Conte M, Fuel Cells, 10, 806 (2010)
Jarvis LP, Atwater TB, Cygan PJ, J. Power Sources, 79(1), 60 (1999)
Huggins RA, Solid State Ion., 134(1-2), 179 (2000)
Chu A, Braatz P, J. Power Sources, 112(1), 236 (2002)
Papageorgiou N, Athanassov Y, Armand M, Bonhote P, Pettersson H, Azam A, Gratzel M, J. Electrochem. Soc., 143, 3009 (1996)
Koch VR, Dominey LA, Nanjundiah C, Ondrechen MJ, J. Electrochem. Soc., 143(3), 798 (1996)
Fung YS, Zhou RQ, J. Power Sources, 81, 891 (1999)
Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y, Chem. Lett., 29(8), 922 (2000)
Hu YS, Wang ZX, Li H, Huang XJ, Chen L, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 61, 403 (2004)
Fraser KJ, Izgorodina EI, Forsyth M, Scott JL, Mac-Farlane DR, Chem. Commun., 37, 3817 (2007)
Zheng JP, Jow TR, J. Electrochem. Soc., 142(1), L6 (1995)
Scholz F, Electroanalytical Methode v.2, Springer Science & Business Media (2009).
Zhang SM, Hou YW, Huang WG, Shan YK, Electrochim. Acta, 50(20), 4097 (2005)
Welton T, Chem. Rev., 99(8), 2071 (1999)
Sato T, Masud G, Takagi K, Electrochim. Acta, 49, 3603 (2003)
Matsumoto H, Sakaebe H, Tatsumi K, J. Power Sources, 146(1-2), 45 (2005)
Howlett PC, MacFarlane DR, Hollenkamp AF, Electrochem. Solid State Lett., 7(5), A97 (2004)
Sakaebe H, Matsumoto H, Tatsumi K, J. Power Sources, 146(1-2), 693 (2005)
Koura N, Etoh K, Idemoto Y, Matsumoto F, Chem. Lett., 12, 1320 (2001)
Fung YS, Zhou RQ, J. Power Sources, 81, 891 (1999)
Nakagawa H, Izuchi S, Kuwana K, Nukuda T, Aihara Y, J. Electrochem. Soc., 150(6), A695 (2003)
Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH, J. Mater. Chem., 22, 767 (2012)
Jiang H, Ma J, Li CZ, Adv. Mater., 24(30), 4197 (2012)
Miller JR, Burke AF, Interface, 17, 53 (2008)
Conte M, Fuel Cells, 10, 806 (2010)
Jarvis LP, Atwater TB, Cygan PJ, J. Power Sources, 79(1), 60 (1999)
Huggins RA, Solid State Ion., 134(1-2), 179 (2000)
Chu A, Braatz P, J. Power Sources, 112(1), 236 (2002)
Papageorgiou N, Athanassov Y, Armand M, Bonhote P, Pettersson H, Azam A, Gratzel M, J. Electrochem. Soc., 143, 3009 (1996)
Koch VR, Dominey LA, Nanjundiah C, Ondrechen MJ, J. Electrochem. Soc., 143(3), 798 (1996)
Fung YS, Zhou RQ, J. Power Sources, 81, 891 (1999)
Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y, Chem. Lett., 29(8), 922 (2000)
Hu YS, Wang ZX, Li H, Huang XJ, Chen L, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 61, 403 (2004)
Fraser KJ, Izgorodina EI, Forsyth M, Scott JL, Mac-Farlane DR, Chem. Commun., 37, 3817 (2007)
Zheng JP, Jow TR, J. Electrochem. Soc., 142(1), L6 (1995)
Scholz F, Electroanalytical Methode v.2, Springer Science & Business Media (2009).