ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 27, 2015
Accepted December 11, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electrochemical performance of three shaped ZnO nanoparticles prepared in LiOH, NaOH and KOH alkaline solutions as anodic materials for Ni/Zn redox batteries

Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea 1Research & Development Center, Vitzrocell Co., Yesan-gun, Chungnam 23535, Korea
Korean Journal of Chemical Engineering, April 2016, 33(4), 1447-1455(9), 10.1007/s11814-015-0280-y
downloadDownload PDF

Abstract

ZnO nanoparticles with three morphologies were synthesized by a hydrothermal route at 120 ℃ for 3 h in high alkaline aqueous solutions of LiOH, NaOH, and KOH. We analyzed them by X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), cyclic voltammetry (CV), Zeta potential measurement, and impedance. XRD and SEM showed that the obtained ZnO nanoparticles had high purity and perfect crystallinity, and the morphologies of the particles prepared in the LiOH, NaOH, and KOH solutions showed nanoplate, nanobead, and nanorod shapes, respectively. CV showed that the nanoplate ZnO-LiOH and nanorod ZnO-KOH have superior electrochemical activity to that of the other ZnO nanostructures. As electrode materials of Ni/Zn redox batteries, the nanoplate ZnO-LiOH showed a significantly improved cycle stability after the 30th cycle compared to that of ZnO-NaOH and conventional ZnO with a mean discharge capacity of 153 mA h g-1, a cell efficiency of 93%, and higher discharge voltages of 1.9. In addition, during the charging/discharging cycles, the growth of zinc dendrite clusters could be suppressed, which resulted in an improvement in the cycle stability of the Ni/nanoplate ZnO-LiOH redox cell.

References

Thaller LH, NASA TM X-71540 (1974).
Chen F, Sun Q, Gao W, Liu J, Yan C, Liu Q, J. Power Sources, 280, 227 (2015)
Hyeon DH, Chun JH, Lee CH, Jung HC, Kim SH, Korean J. Chem. Eng., 32(8), 1554 (2015)
Park SM, Kim H, Korean J. Chem. Eng., 32(12), 2434 (2015)
Nikiforidis G, Berlouis L, Hall D, Hodgson D, Electrochim. Acta, 125, 176 (2014)
Cheng YH, Zhang HM, Lai QZ, Li XF, Shi DQ, Zhang LQ, J. Power Sources, 241, 196 (2013)
Cheng YH, Zhang HM, Lai QZ, Li XF, Zheng Q, Xi XL, Ding C, J. Power Sources, 249, 435 (2014)
Lan CJ, Lee CY, Chin TS, Electrochim. Acta, 52(17), 5407 (2007)
Nakata A, Murayama H, Fukuda K, Yamane T, Arai H, Hirai T, Uchimoto Y, Yamaki J, Ogumi Z, Electrochim. Acta, 166, 82 (2015)
Yang HX, Cao YL, Ai XP, Xiao LF, J. Power Sources, 128(1), 97 (2004)
Yuan YF, Yu LQ, Wu HM, Yang JL, Chen YB, Guo SY, Tu JP, Electrochim. Acta, 56(11), 4378 (2011)
Wang RJ, Yang ZH, Yang B, Fan XM, Wang TT, J. Power Sources, 246, 313 (2014)
Yuan YF, Li Y, Tao S, Ye FC, Yang JL, Guo SY, Tu JP, Electrochim. Acta, 54(26), 6617 (2009)
Wu JZ, Tu JP, Yuan YF, Ma M, Wang XL, Zhang L, Li RL, Zhang J, J. Alloy. Compd., 479, 624 (2009)
Yang B, Yang ZH, Wang RJ, Wang TT, Electrochim. Acta, 111, 581 (2013)
Racz R, Ilea P, Hydrometallurgy, 139, 116 (2013)
Wang RJ, Yang ZH, Yang B, Wang TT, Chu ZH, J. Power Sources, 251, 344 (2014)
Yuan YF, Tu1 JP, Wu HM, Li Y, Shi DQ, Nanotechnol., 16, 803 (2005)
Ma M, Tu JP, Yuan YF, Wang XL, Li KF, Mao F, Zeng ZY, J. Power Sources, 179(1), 395 (2008)
Wen RJ, Yang ZH, Fan XM, Tan ZY, Yang B, Electrochim. Acta, 83, 376 (2012)
Yang JL, Yuan YF, Wu HM, Li Y, Chen YB, Guo SY, Electrochim. Acta, 55(23), 7050 (2010)
Xie X, Yang ZH, Feng ZB, Zhang Z, Huang JH, Electrochim. Acta, 154, 308 (2015)
Wan L, Yan S, Feng J, Yang Z, Fan X, Li Z, Zou Z, Colloids Surf. A: Physicochem. Eng. Asp., 396, 46 (2012)
Prabhu YT, Rao KV, Kumar VSS, Kumari BS, Adv. Nanoparticles, 2, 45 (2013)
Marsalek R, APCBEE Procedia, 9, 13 (2014)
Yuan YF, Tu JP, Wu HM, Zhang CQ, Wang SF, Zhao XB, J. Power Sources, 165(2), 905 (2007)
Huang H, Zhang L, Zhang WK, Gan YP, Shao H, J. Power Sources, 184(2), 663 (2008)
Ramadoss A, Kim SJ, Mater. Chem. Phys., 140(1), 405 (2013)
Lee J, Kumar P, Lee J, Moudgil BM, Singh RK, J. Alloy. Compd., 550, 536 (2013)
Lee J, Chae J, Kim S, Kim DY, Park N, Kang M, J. Ind. Eng. Chem., 16(2), 185 (2010)
Neveux L, Chiche D, Bachi DB, Favergeon L, Pijolat M, Chem. Eng. J., 181-182, 508 (2012)
Jung MH, Chu MJ, J. Mater. Chem. C, 2, 6675 (2014)
Yuan YF, Tu JP, Wu HM, Yang YZ, Shi DQ, Zhao XB, Electrochim. Acta, 51(18), 3632 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로