ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 6, 2015
Accepted January 17, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates

Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
bskim@chungbuk.ac.kr
Korean Journal of Chemical Engineering, May 2016, 33(5), 1505-1513(9), 10.1007/s11814-016-0019-4
downloadDownload PDF

Abstract

Polyhydroxyalkanoates (PHAs) are considered as sustainable ‘green/bio plastics’ because they have potential to replace their depleting petroleum-based competitors in the recent future. To reach this goal, PHAs must be able to compete with the established petroleum-based plastics in both technical and economic aspects. The current PHA production is based on high-priced substrates of high nutritional value and simple carbon sources such as glucose, sucrose, starch, or vegetable oils. Non-food based carbon-rich complex polysaccharides of lignocellulosic and marine biomass can be used as alternative and suitable feedstock through consolidated bioprocessing (CBP). CBP is a promising strategy that involves the production of lytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products in a single process step. CBP offers very large cost reductions if microorganisms possessing the abilities are found or microbial processes are developed to utilize substrate and simultaneously produce products. This review focuses on possible available complex polysaccharides of lignocellulosic and marine biomass that can be used as resources to produce PHAs in biorefineries, including CBP.

References

Olson DG, McBride JE, Shaw AJ, Lynd LR, Curr. Opin. Biotechnol., 23, 396 (2012)
Jouzani GS, Taherzadeh MJ, Biofuel Res. J., 5, 152 (2015)
Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 17 (2000)
Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25 (2000)
Aden A, Foust T, Cellulose, 16, 535 (2009)
Lynd LR, van Zyl WH, McBride JE, Laser M, Curr. Opin. Biotechnol., 16, 577 (2005)
Sawant SS, Salunke BK, Kim BS, Bioresour. Technol., 194, 247 (2015)
Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T, Science, 311, 484 (2006)
Goldemberg J, Science, 315, 808 (2007)
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD, Science, 315, 804 (2007)
Lange JP, Biofuel. Bioprod. Bior., 1, 39 (2007)
Cao GL, Zhao L, Wang AJ, Wang ZY, Ren NQ, Biotechnol. Biofuels, 7, 82 (2014)
de Jong E, Jungmeier G, in Industrial biorefineries and white biotechnology, Pandey A, Hofer R, Larroche C, Taherzadeh M, Nampoothiri M, Eds., Elsevier (2015).
Kamm B, Kamm M, Adv. Biochem. Eng. Biotechnol., 105, 175 (2007)
Brigham CJ, Kurosawa K, Rha C, Sinskey AJ, J. Microbial Biochem. Technol., S3, 002 (2011)
Bobleter O, Prog. Polym. Sci, 19, 797 (1994)
Kim S, Dale BE, Biomass Bioenerg., 26(4), 361 (2004)
Kumar R, Singh S, Singh OV, J. Ind. Microbiol. Biotechnol., 35, 377 (2008)
Lee J, J. Biotechnol., 56, 1 (1997)
Cherubini F, Energy Conv. Manag., 51(7), 1412 (2010)
Menon V, Rao M, Prog. Energy Combust. Sci., 38(4), 522 (2012)
Beguin P, Lemaire M, Crit. Rev. Biochem. Mol. Biol., 31, 201 (1996)
Tomme P, Warren RAJ, Gilkes NR, Adv. Microb. Physiol., 37, 1 (1995)
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS, Microbiol. Mol. Biol. R., 66, 506 (2002)
Warren RAJ, Annu. Rev. Microbiol., 50, 183 (1996)
Taylor LE II, PhD Dissertation, University of Maryland, College Park (2005).
Brandt A, Grasvik J, Hallett JP, Welton T, Green Chem., 15, 550 (2013)
Wei N, Quarterman J, Jin YS, Trends Biotechnol., 31, 70 (2013)
Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P, Science, 319, 1235 (2008)
Dominguez-Faus R, Powers SE, Burken JG, Alvarez PJ, Environ. Sci. Technol., 43, 3005 (2009)
Lobban CS, Wynne MJ, The biology of seaweeds, University of California Press, 17 (1981).
Adams JM, Gallagher JA, Donnison IS, J. Appl. Phycol., 21, 569 (2009)
Lee SM, Lee JH, Bioresour. Technol., 102(10), 5962 (2011)
Horn SJ, Aasen IM, Ostgaard K, J. Ind. Microbiol. Biotechnol., 25, 249 (2000)
Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y, Science, 335(6066), 308 (2012)
Sawant SS, Salunke BK, Kim BS, Enzyme Microb. Technol., 77, 8 (2015)
Jol CN, Neiss TG, Penninkhof B, Rudolph B, de Ruiter GA, Anal. Biochem., 268, 213 (1999)
Quemener B, Lahaye M, J. Appl. Phycol., 10, 75 (1998)
Kim C, Ryu HJ, Kim SH, Yoon JJ, Kim HS, Kim YJ, Bull. Korean Chem. Soc., 31, 511 (2010)
Bayer EA, Lamed R, Biodegradation, 3, 171 (1992)
Ljungdahl LG, Eriksson KE, in Advances in microbial ecology, Marshall K, Eds, Springer US, 8 (1985).
Patil SV, Bathe GA, Patil AV, Patil RH, Salunke BK, Adv. Biotechnol., 8, 14 (2009)
Gupta AK, Rastogi G, Nayduch D, Sawant SS, Bhonde RR, Shouche YS, Med. Vet. Entomol., 28, 345 (2014)
Salunke BK, Sawant SS, Kim BS, Appl. Biochem. Biotechnol., 174(2), 587 (2014)
Salunke BK, Sawant SS, Lee SI, Kim BS, Appl. Microbiol. Biotechnol., 99(13), 5419 (2015)
Yun JH, Sawant SS, Kim BS, Korean J. Chem. Eng., 30(12), 2223 (2013)
Sawant SS, Salunke BK, Kim BS, Curr. Microbiol., 69(6), 832 (2014)
Lemoigne M, Bull. Soc. Chim. Biol., 8, 770 (1926)
Shah AA, Hasan F, Hameed A, Ahmed S, Biotechnol. Adv., 26, 246 (2008)
Khanna S, Srivastava AK, Process Biochem., 40(2), 607 (2005)
Lu J, Tappel RC, Nomura CT, J. Macromol. Sci.-Polym. Rev, 49, 226 (2009)
Zinn M, Hany R, Adv. Eng. Mater., 7, 408 (2005)
Escapa IF, Morales V, Martino VP, Pollet E, Averous L, Garcia JL, Prieto MA, Appl. Microbiol. Biotechnol., 89(5), 1583 (2011)
Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang JY, Polymers, 6, 706 (2014)
Shang LG, Jiang M, Chang HN, Biotechnol. Lett., 25(17), 1415 (2003)
Dawes E, Novel biodegradable microbial polymers, Kluwer Academic Publishers, Dordrecht, The Netherlands (1990).
Tsuge T, Yano K, Imazu S, Numata K, Kikkawa Y, Abe H, Taguchi K, Doi Y, Macromol. Biosci., 5, 112 (2005)
Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I, J. Appl. Microbiol., 102(6), 1437 (2007)
Pawar KD, Banskar S, Rane SD, Charan SS, Kulkarni GJ, Sawant SS, Ghate HV, Patole MS, Shouche YS, Microbiol. Open, 1, 415 (2012)
Munoz LEA, Riley MR, Biotechnol. Bioeng., 100(5), 882 (2008)
Gao D, Luan Y, Wang Q, Liang Q, Qi Q, Microb. Cell Fact., 14, 159 (2015)
Cesario MT, Raposo RS, de Almeida MCMD, van Keulen F, Ferreira BS, da Fonseca MMR, New Biotechnol., 31, 104 (2014)
Lee SY, Bioprocess Eng., 18, 397 (1998)
Silva LF, Taciro MK, Ramos MEM, Carter JM, Pradella JCG, Gomez JGC, J. Ind. Microbiol. Biotechnol., 31, 245 (2004)
Zhang YH, Sun WD, Wang HW, Geng AL, Bioresour. Technol., 147, 307 (2013)
Bera A, Dubey S, Bhayani K, Mondal D, Mishra S, Ghosh PK, Int. J. Biol. Macromol., 72, 487 (2015)
Keenan T, Nakas J, Tanenbaum S, J. Ind. Microbiol. Biotechnol., 33, 616 (2006)
Nduko JM, Suzuki W, Matsumoto K, Kobayashi H, Ooi T, Fukuoka A, Taguchi S, J. Biosci. Bioeng., 113(1), 70 (2012)
Sathish A, Glaittli K, Sims RC, Miller CD, J. Polym. Environ., 22, 272 (2014)
Iranmahboob J, Nadim F, Monemi S, Biomass Bioenerg., 22(5), 401 (2002)
Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO, Enzyme Microb. Technol., 24(3-4), 151 (1999)
Prabu SC, Murugesan AG, Int. J. Environ. Res., 4, 519 (2010)
Sidhu R, Silviya N, Binod P, Pandey A, Biochem. Eng. J., 78, 67 (2013)
Narayanan A, Kumar VS, Ramana KV, Waste Biomass Valorization, 5, 109 (2014)
Gowda V, Shivakumar S, Braz. Arch. Biol. Technol., 57, 55 (2014)
Silva JA, Tobella LM, Becerra J, Godoy F, Martinez MA, J. Biosci. Bioeng., 103(6), 542 (2007)
Pan WY, Nomura CT, Nakas JP, Bioresour. Technol., 125, 275 (2012)
Lopes MSG, Gosset G, Rocha RCS, Gomez JGC, da Silva LF, Curr. Microbiol., 63(4), 319 (2011)
Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I, Process Biochem., 49(9), 1409 (2014)
Van-Thuoc D, Quillaguaman J, Mamo G, Mattiasson B, J. Appl. Microbiol., 104(2), 420 (2008)
Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O'Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK, Tuohy MG, Padamatti RB, Casey E, O'Connor KE, Bioresour. Technol., 150, 202 (2013)
Yu J, Stahl H, Bioresour. Technol., 99(17), 8042 (2008)
Radhika D, Murugesan AG, Bioresour. Technol., 121, 83 (2012)
Zhang S, Norrlow O, Wawrzynczyk J, Dey ES, Appl. Environ. Microbiol., 70, 6776 (2004)
Salamanca-Cardona L, Ashe CS, Stipanovic AJ, Nomura CT, Appl. Microbiol. Biotechnol., 98(2), 831 (2014)
Bowers T, Vaidya A, Smith DA, Lloyd-Jones G, J. Chem. Technol. Biotechnol., 89(7), 1030 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로