Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 29, 2015
Accepted December 11, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Heat transfer and fluid flow modeling in serpentine microtubes using adaptive neuro-fuzzy approach
CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran
Korean Journal of Chemical Engineering, May 2016, 33(5), 1534-1550(17), 10.1007/s11814-015-0281-x
Download PDF
Abstract
An adaptive neuro-fuzzy inference system (ANFIS) is applied to predict thermal and flow characteristics in serpentine microtubes. Heat transfer rate and pressure drop were experimentally measured for six serpentine microtubes with different geometrical parameters. Thermal and flow characteristics were obtained in various flow conditions. The ANFIS models were trained using the experimental data to predict Nusselt number (Nu) and friction factor (f) in the studied serpentine microtubes as a function of geometric parameters and flow conditions. The model was validated through testing data set, which were not previously introduced to the developed ANFIS. For Nu prediction, the root mean square error (RMSE), mean relative error (MRE), and absolute fraction of variance (R2) between the predicted results and experimental data were found 0.2058, 1.74%, and 0.9987, respectively. The corresponding calculated values for f were 0.0056, 2.98%, and 0.9981, respectively. The prediction accuracy of the ANFIS models was compared with that of corresponding classical power-law correlations and its advantages are illustrated.
References
Mala GM, Li DQ, Dale JD, Int. J. Heat Mass Transf., 40(13), 3079 (1997)
Kumar MR, Dasgupta S, Chem. Eng. Commun., 160, 225 (1997)
Dehghan M, Daneshipour M, Valipour MS, Rafee R, Saedodin S, Energy Conv. Manag., 92, 244 (2015)
Shojaeian M, Shojaee SMN, Korean J. Chem. Eng., 30(4), 823 (2013)
Choi SB, Barron RF, Warrington RO, Actuators, and Systems, ASME DSC, 32, 123 (1991)
Hong C, Asako Y, Appl. Therm. Eng., 28, 1375 (2008)
Xiong RQ, Chung JN, Int. J. Heat Mass Transf., 53(15-16), 3284 (2010)
Hao PF, Zhang XW, Yao ZH, He F, Exp. Therm. Fluid Sci., 32, 423 (2007)
Zhuo L, He YL, Tang GH, Tao WQ, Int. J. Heat Mass Transf., 50(17-18), 3447 (2007)
Lelea D, Int. Commun. Heat Mass Transf., 37, 245 (2010)
Dean WR, Hurst JM, Mathematika, 6, 77 (1959)
Dean WR, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 5, 673 (1928)
Patankar SV, Pratap VS, Spalding DB, J. Fluid Mech., 62, 539 (1974)
Kalb CE, Seader JD, Int. J. Heat Mass Transf., 15, 801 (1972)
Sui Y, Lee PS, Teo CJ, Int. J. Therm. Sci., 50, 2473 (2011)
Sui Y, Teo CJ, Lee PS, Chew YT, Shu C, Int. J. Heat Mass Transf., 53(13-14), 2760 (2010)
Rosaguti NR, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 49(17-18), 2912 (2006)
Zheng ZY, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 62, 391 (2013)
Rosaguti NR, Fletcher DF, Haynes BS, Chem. Eng. Technol., 28(3), 353 (2005)
Geyer PE, Rosaguti NR, Fletcher DF, Haynes BS, Microfluid Nanofluid, 2, 195 (2006)
Zheng ZY, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 71, 758 (2014)
Jang JSR, IEEE Trans. Syst. Man. Cybern., 23, 665 (1993)
Mohanraj M, Jayaraj S, Muraleedharan C, Renew. Sust. Energ. Rev., 16, 1340 (2012)
Mohanraj M, Jayaraj S, Muraleedharan C, Int. J. Therm. Sci., 90, 150 (2015)
Mirsepahi A, Chen L, O’Neill B, Int. Commun. Heat Mass Transf., 41, 19 (2013)
Beigzadeh R, Rahimi M, Int. Commun. Heat Mass Transf., 39, 1647 (2012)
Mehrabi M, Pesteei SM, Int. Commun. Heat Mass Transf., 37, 1546 (2010)
Holman JP, Experimental Methods for Engineers, 3rd Ed. McGraw-Hill, New York (2011).
Shing J, Jang R, Adaptive Network, Based Fuzzy Inference, CiteSeerx Publication (1993).
Tong RM, Automatic, 13, 559 (1997)
Atmaca H, Cetisli B, Yavuz HS, The comparison of fuzzy inference systems and neural network approaches with ANFIS method for fuel consumption data, in: Second International Conference on Electrical and Electronics Engineering Papers ELECO’2001, Bursa, Turkey (2001).
Rahimi M, Shabanian SR, Alsairafi AA, Chem. Eng. Process., 48(3), 762 (2009)
Cakmakci M, Bioproc. Biosyst. Eng., 30, 349 (2007)
Garson GD, AI Expert, 6, 47 (1991)
Beigzadeh R, Rahimi M, Shabanian SR, Fluid Phase Equilib., 331, 48 (2012)
Mehrabi M, Pesteei SM, Pashaee T, Int. Commun. Heat Mass Transf., 38, 525 (2011)
Kumar MR, Dasgupta S, Chem. Eng. Commun., 160, 225 (1997)
Dehghan M, Daneshipour M, Valipour MS, Rafee R, Saedodin S, Energy Conv. Manag., 92, 244 (2015)
Shojaeian M, Shojaee SMN, Korean J. Chem. Eng., 30(4), 823 (2013)
Choi SB, Barron RF, Warrington RO, Actuators, and Systems, ASME DSC, 32, 123 (1991)
Hong C, Asako Y, Appl. Therm. Eng., 28, 1375 (2008)
Xiong RQ, Chung JN, Int. J. Heat Mass Transf., 53(15-16), 3284 (2010)
Hao PF, Zhang XW, Yao ZH, He F, Exp. Therm. Fluid Sci., 32, 423 (2007)
Zhuo L, He YL, Tang GH, Tao WQ, Int. J. Heat Mass Transf., 50(17-18), 3447 (2007)
Lelea D, Int. Commun. Heat Mass Transf., 37, 245 (2010)
Dean WR, Hurst JM, Mathematika, 6, 77 (1959)
Dean WR, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 5, 673 (1928)
Patankar SV, Pratap VS, Spalding DB, J. Fluid Mech., 62, 539 (1974)
Kalb CE, Seader JD, Int. J. Heat Mass Transf., 15, 801 (1972)
Sui Y, Lee PS, Teo CJ, Int. J. Therm. Sci., 50, 2473 (2011)
Sui Y, Teo CJ, Lee PS, Chew YT, Shu C, Int. J. Heat Mass Transf., 53(13-14), 2760 (2010)
Rosaguti NR, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 49(17-18), 2912 (2006)
Zheng ZY, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 62, 391 (2013)
Rosaguti NR, Fletcher DF, Haynes BS, Chem. Eng. Technol., 28(3), 353 (2005)
Geyer PE, Rosaguti NR, Fletcher DF, Haynes BS, Microfluid Nanofluid, 2, 195 (2006)
Zheng ZY, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 71, 758 (2014)
Jang JSR, IEEE Trans. Syst. Man. Cybern., 23, 665 (1993)
Mohanraj M, Jayaraj S, Muraleedharan C, Renew. Sust. Energ. Rev., 16, 1340 (2012)
Mohanraj M, Jayaraj S, Muraleedharan C, Int. J. Therm. Sci., 90, 150 (2015)
Mirsepahi A, Chen L, O’Neill B, Int. Commun. Heat Mass Transf., 41, 19 (2013)
Beigzadeh R, Rahimi M, Int. Commun. Heat Mass Transf., 39, 1647 (2012)
Mehrabi M, Pesteei SM, Int. Commun. Heat Mass Transf., 37, 1546 (2010)
Holman JP, Experimental Methods for Engineers, 3rd Ed. McGraw-Hill, New York (2011).
Shing J, Jang R, Adaptive Network, Based Fuzzy Inference, CiteSeerx Publication (1993).
Tong RM, Automatic, 13, 559 (1997)
Atmaca H, Cetisli B, Yavuz HS, The comparison of fuzzy inference systems and neural network approaches with ANFIS method for fuel consumption data, in: Second International Conference on Electrical and Electronics Engineering Papers ELECO’2001, Bursa, Turkey (2001).
Rahimi M, Shabanian SR, Alsairafi AA, Chem. Eng. Process., 48(3), 762 (2009)
Cakmakci M, Bioproc. Biosyst. Eng., 30, 349 (2007)
Garson GD, AI Expert, 6, 47 (1991)
Beigzadeh R, Rahimi M, Shabanian SR, Fluid Phase Equilib., 331, 48 (2012)
Mehrabi M, Pesteei SM, Pashaee T, Int. Commun. Heat Mass Transf., 38, 525 (2011)