ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 23, 2015
Accepted November 17, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Mathematical modeling of supercritical carbon dioxide extraction of methyl eugenol from tuberose flowers

Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700 032, India
pb@ftbe.jdvu.ac.in
Korean Journal of Chemical Engineering, May 2016, 33(5), 1681-1691(11), 10.1007/s11814-015-0247-z
downloadDownload PDF

Abstract

Methyl eugenol-rich extracts from dried tuberose flowers (Polianthes tuberosa L.) of Calcutta single variety were obtained using supercritical carbon dioxide (SC-CO2) extraction. The optimized conditions for highest yield of methyl eugenol were 50 ℃, 300 bar, 135 min with 1 L min-1 flow rate of gaseous CO2. Solubilities of methyl eugenol under different SC-CO2 extraction conditions were evaluated by Hildebrand solubility parameter and Chrastil equation. The extraction curve of methyl eugenol followed plug flow model. Steady state extraction occurred up to 100min, followed by unsteady state. Release of methyl eugenol from tuberose flowers followed first-order kinetics (Peppas model) and non-Fickian diffusion. Packed bed characterization was carried out using dimensionless numbers of mass transfer, considering steady and unsteady states of extraction. These findings could be used in the development of the pilot plant and commercial scale extraction of methyl eugenol from floral matrices.

References

Ghosh PK, Bhattacharjee P, Das S, Int. J. Pharm. Sci. Res., 5, 1279 (2014)
Anand AK, Mohan M, Haider SZ, Sharma A, Int. J. Pharm. Sci., 3, 223 (2011)
Nabiha B, Abdelfateh E, Faten K, Paul WJ, Michel M, Moncef CM, J. Essent. Oil Bear. Pl., 12, 694 (2009)
Joshi RK, Indian J. Pharm. Sci., 75, 457 (2013)
Ayci F, Aydinli M, Bozdemir OA, Tutas M, Flavour Frag. J., 20, 481 (2005)
N.T. P. Reports on Carcinogens, 11, 153, PMID: 15326674 (2002).
Mukhopadhyay M, Fundamentals of supercritical fluids and phase equilibria, Natural Extracts using Supercritical Carbon dioxide, CRC Press, Florida, USA (2000).
Zizovic I, Stamenic M, Orlovic A, Skala D, J. Supercrit. Fluids, 39(3), 338 (2007)
Ghoreishi SM, Bataghva E, Korean J. Chem. Eng., 31(9), 1632 (2014)
Reverchon E, Daghero J, Marrone C, Mattea M, Poletto M, Ind. Eng. Chem. Res., 38(8), 3069 (1999)
A.O.A.C.: AOAC method 967.19, in: Helrich K, Ed., Official Methods of Analysis of AOAC International, 15th Ed., AOAC International, Arlington, VA, USA (1990).
Gomes PB, Mata VG, Rodrigues AE, J. Supercrit. Fluids, 41(1), 50 (2007)
McCabe WL, Smith JC, Harriot P, Flow past immersed objects, Unit Operations of Chemical Engineering, 7th Ed., McGraw Hill, Ohio, USA (2005).
Chatterjee D, Bhattacharjee P, Food Bioprocess Technol., 6, 2587 (2013)
Silva GF, Gamarra FMC, Oliveira AL, Cabral FA, Braz. J. Chem. Eng., 25, 419 (2008)
Bhattacharjee P, Chatterjee D, Singhal RS, Food Bioprocess Technol., 5, 2506 (2012)
Hildebrand JH, Scott RL, The Solubility of Non electrolytes, 3rd Ed., Dover, New York, USA (1950).
Fedors RF, Polym. Eng. Sci., 14, 147 (1974)
Sajilata MG, Bule MV, Chavan P, Singhal RS, Kamat MY, Sep. Purif. Technol., 71(2), 173 (2010)
King JW, LWT-Food Science Technol., 28, 190 (1995)
Reid RJ, Prausnitz JM, Poling BE, Pure component constants, The Properties of Gases and Liquids, 4th Ed., Mc-Graw-Hill, New York, USA (1987).
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
Nejad SJ, Abolghasemi H, Moosavian MA, Maragheh MG, Chem. Eng. Res. Des., 88(7A), 893 (2010)
Ismadji S, Bhatia SK, J. Supercrit. Fluids, 27(1), 1 (2003)
Catchpole OJ, Vonkamp JC, Ind. Eng. Chem. Res., 36(9), 3762 (1997)
Westerman D, Santos RCD, Bosley JA, Rogers JS, Al-Duri B, J. Supercrit. Fluids, 37(1), 38 (2006)
Song S, Wang Z, Qian Y, Zhang L, Luo E, J. Agric. Food Chem., 60, 4388 (2012)
Sovova H, Komers R, Kucera J, Jez J, Chem. Eng. Sci., 49(15), 2499 (1994)
Reverchon E, J. Supercrit. Fluids, 10(1), 1 (1997)
Martin A, Cocero MJ, J. Supercrit. Fluids, 39(3), 304 (2007)
Tan CS, Liang SK, Liou DC, Chem. Eng. J., 38, 17 (1988)
Kotnik P, Skerget M, Knez Z, J. Supercrit. Fluids, 43(2), 192 (2007)
Hong IK, RHO SW, LEE KS, LEE WH, YOO KP, Korean J. Chem. Eng., 7(1), 40 (1990)
Montgomery DC, Experiments with a single factor: the analysis of variance, Design and Analysis of Experiments, John Wiley and Sons, New York, USA (2001).
Montgomery DC, Response surface methods and other approaches to process optimization, Design and Analysis of Experiments, John Wiley and Sons New York, USA (2001).
Ge Y, Ni Y, Yan H, Chen Y, Cai T, J. Food Sci., 67, 239 (2002)
Sovova H, J. Supercrit. Fluids, 66, 73 (2012)
Cseke LJ, Kaufman PB, How and why these compounds are synthesized by plants, Natural Products from Plants. In: Cseke LJ, Lu CR, Kornfield A, Kaufman PB, Kirakosyan A, Eds., CRC Press, Florida, USA (2006).
Stamenic M, Zizovic I, Orlovic A, Skala D, J. Supercrit. Fluids, 46(3), 285 (2008)
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA, Int. J. Pharm., 15, 25 (1983)
Paulaitis ME, Krukonis VJ, Kurnik Y, Reid RC, Rev. Chem. Eng., 1, 179 (1983)
Stuber F, Vazquez AM, Larrayoz MA, Recasens F, Ind. Eng. Chem. Res., 35(10), 3618 (1996)
Norhuda I, Omar AKM, Int. J. Chem. Bio. Eng., 2, 10 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로