ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 31, 2015
Accepted December 18, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Tuning magnetism via selective injection into ice-like clathrate hydrates

School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea 1School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, U.S.A., USA 2Department of Physics, Kyungpook National University, Daegu 41566, Korea 3Korea Institute of Energy Research, 152, Gajeong-ro, Yeseong-gu, Daejeon 34129, Korea 4Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
Korean Journal of Chemical Engineering, May 2016, 33(5), 1706-1711(6), 10.1007/s11814-015-0291-8
downloadDownload PDF

Abstract

Clathrate hydrates exhibit unique intermolecular interactions between host-guest and guest-guest molecules because they have 3-dimensional superstructures consisting of the sublattices created by hydrogen-bonded water molecules that form cage-like frameworks in which guest molecules can be incorporated. Lattice engineering or molecular engineering using a selective injection of specific guest molecules into these sublattices can be exploited to tune the physicochemical properties of guest molecules or to create new functional materials. Here, we report distinctive intermolecular behavior of oxygen molecules that are selectively inserted in a structure-II type superstructure consisting of a tetrahedral sublattice by the small 512 water cages and a diamond-like sublattice by the large 51264 cages. Pure O2 clathrate hydrate and binary THF+O2 clathrate hydrate were synthesized, and their magnetism and heat capacity were measured at low temperature conditions. These results strongly suggest that the magnetic property of the oxygen molecule is largely varied with the formation of a 3-dimensional superstructure by the injection of O2 into the water frameworks.

References

Pauling L, Marsh RE, Proc. Natl. Acad. Sci. U.S.A., 38, 112 (1952)
Atwood JL, Davies JED, MacNicol DD, Inclusion Compounds, Vol. 1, Academic Press Inc., London (1984).
Sloan ED, Koh C, Clathrate Hydrates of Natural Gases, CRC Press, New York, 3rd Ed. (2007).
Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature, 434, 743 (2005)
Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, Proc. Natl. Acad. Sci. U.S.A., 103, 12690 (2006)
Park Y, Dho J, Seol J, Yeon SH, Cha M, Jeong YH, Seo Y, Lee H, J. Am. Chem. Soc., 131(16), 5736 (2009)
Bramwell ST, Gingras MJP, Science, 294, 1495 (2001)
Pauling L, J. Am. Chem. Soc., 57, 2680 (1935)
Snyder J, Slusky JS, Cava RJ, Shiffer P, Nature, 413, 48 (2001)
Wang RF, Nisoli C, Freitas RS, Li J, McConville W, Cooley BJ, Lund MS, Samarth N, Leighton C, Crespi VH, Schiffer P, Nature, 439, 303 (2006)
Fischer KH, Hertz JA, Spin glasses, Cambridge University Press (1993).
Harris MJ, Bramwell ST, McMorrow DF, Zeiske T, Godfrey KW, Phys. Rev. Lett., 79, 2554 (1997)
Bansal C, Kawanaka H, Bando H, Nishihara Y, Phys. Rev. B, 66, 052406 (2002)
Gingras MJP, den Hertog BC, Faucher M, Gardner JS, Dunsinger SR, Chang LJ, Gaulin BD, Raju NP, Greedan JE, Phys. Rev. B, 62, 6496 (2000)
Freiman YA, Jodi JJ, Phys. Rep., 401, 1 (2004)
Kitaura R, Kitagawa S, Kubota Y, Kobayashi TC, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang HC, Ozawa TC, Suzuki M, Sakata M, Takata M, Science, 298, 2358 (2002)
Oda A, Kawakami T, Takeda S, Mori W, Matsushita MM, Izuoka A, Sugawara T, Yamaguchi K, Mol. Cryst. Liq. Cryst., 306, 151 (1997)
Kobayashi TC, Matsuo A, Suzuki M, Kondo K, Kitaura R, Matsuda R, Kitagawa S, Prog. Theor. Phys. Suppl., 159, 271 (2005)
Takamizawa S, Nakata E, Akatsuka T, Angew. Chem.-Int. Edit., 45, 2216 (2006)
Bussery B, Wormer PES, J. Chem. Phys., 99, 1230 (1993)
Evans DF, Richards RE, Nature, 169, 246 (1952)
Kobler U, Marx R, Phys. Rev. B, 35, 9809 (1897)
Ramirez AP, Hayashi A, Cava RJ, Siddharthan R, Shastry BS, Nature, 399(6734), 333 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로