Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 9, 2015
Accepted December 19, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34143, Korea 1Department of Energy and Resources Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea 2Department of Naval Architecture and Ocean Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Korean Journal of Chemical Engineering, May 2016, 33(5), 1712-1719(8), 10.1007/s11814-015-0294-5
Download PDF
Abstract
The recovery of methane gas from methane hydrate bearing sediments was investigated by using a continuous stream of a CO2 and N2 gas mixture. A long cylindrical high-pressure reactor was designed to demonstrate the recovery of methane from methane hydrate bearing sediments, and the injection rate of the gas mixture was controlled to monitor the amount of recovered methane from methane hydrates. The recovery efficiency of methane gas from methane hydrates is inversely proportional to the flow rate of the CO2 and N2 gas mixture. Methane hydrates were synthesized by using two different sediments, having particle size distributions of 75 to 150 μm and 45 to 90 μm with the same porosity, and the recovery efficiency of methane from methane hydrates was also monitored. We confirmed that there is no significant difference in the replacement characteristics by using these two different sediments. Horizontal and vertical flows of the CO2 and N2 gas mixture were applied to monitor the effect of flow direction on replacement characteristics. We also confirmed that a similar amount of methane was recovered in horizontal and vertical flows of the CO2 and N2 gas mixture at the same flow rate. The present study may help in establishing the process variables for recovering methane gas from methane hydrate bearing sediments in offshore conditions.
References
Jeffrey GA, Inclusion Compounds, Vol. 1 (eds. Atwood JL, Davies JED, MacNicol DD), Academic, London (1984).
Sloan ED, Koh CA, Clathrate hydrates of natural gases, CRC Press Llc. (2008).
Boswell R, Collett TS, Energy Environ. Sci., 4(4), 1206 (2011)
Kvenvolden KA, Natural gas hydrate: Background and history of discovery, In Natural Gas Hydrate, Springer (2003).
Collett TS, AAPG Bull., 86(11), 1971 (2002)
Moridis GJ, Sloan ED, Energy Conv. Manag., 48(6), 1834 (2007)
Makogon YF, J. Natural Gas Sci. Eng., 2(1), 49 (2010)
Makogon Y, Holditch S, Makogon T, J. Petroleum Sci. Eng., 56(1), 14 (2007)
Lee SY, Holder GD, Fuel Process. Technol., 71(1), 181 (2001)
Collett TS, Geotimes, 49, 24 (2004)
Englezos P, Lee JD, Korean J. Chem. Eng., 22(5), 671 (2005)
P. L. McGuire Methane hydrate gas production: An assessment of conventional production technology as applied to hydrate gas recovery, Los Alamos National Laboratory, Los Alamos (1981).
Holder GD, Angert PF, In Simulation of gas production from a reservoir containing both gas hydrates and free natural gas, SPE annual technical conference and exhibition, Society of Petroleum Engineers (1982).
Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S, J. Chem. Eng. Jpn., 29(3), 478 (1996)
Hirohama S, Shimoyama Y, Wakabayashi A, Tatsuta S, Nishida N, J. Chem. Eng. Jpn., 29(6), 1014 (1996)
Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA, Angew. Chem.-Int. Edit., 42(41), 5048 (2003)
Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA, Stud. Surf. Sci. Catal., 153, 495 (2004)
Ota M, Saito T, Aida T, Watanabe M, Sato Y, Smith RL, Inomata H, AIChE J., 53(10), 2715 (2007)
Geng CY, Wen H, Zhou H, J. Phys. Chem. A, 113(18), 5463 (2009)
Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, P. Natl. Acad. Sci. USA, 103(34), 12690 (2006)
Shin K, Park Y, Cha MJ, Park KP, Huh DG, Lee J, Kim SJ, Lee H, Energy Fuels, 22(5), 3160 (2008)
Koh DY, Kang H, Kim DO, Park J, Cha M, Lee H, ChemSusChem, 5(8), 1443 (2012)
Cha M, Shin K, Lee H, Moudrakovski IL, Ripmeester JA, Seo Y, Environ. Sci. Technol., 49(3), 1964 (2015)
Koh DY, Ahn YH, Kang H, Park S, Lee JY, Kim SJ, Lee J, Lee H, AIChE J., 61(3), 1004 (2015)
Dornan P, Alavi S, Woo T, J. Chem. Phys., 127(12), 124510 (2007)
Schoderbek D, Martin KL, Howard J, Silpngarmlert S, K, Hester, In North Slope hydrate fieldtrial: CO2/CH4 exchange, OTC Arctic Technology Conference, Offshore Technology Conference (2012).
Sloan ED, Koh CA, Clathrate hydrates of natural gases, CRC Press Llc. (2008).
Boswell R, Collett TS, Energy Environ. Sci., 4(4), 1206 (2011)
Kvenvolden KA, Natural gas hydrate: Background and history of discovery, In Natural Gas Hydrate, Springer (2003).
Collett TS, AAPG Bull., 86(11), 1971 (2002)
Moridis GJ, Sloan ED, Energy Conv. Manag., 48(6), 1834 (2007)
Makogon YF, J. Natural Gas Sci. Eng., 2(1), 49 (2010)
Makogon Y, Holditch S, Makogon T, J. Petroleum Sci. Eng., 56(1), 14 (2007)
Lee SY, Holder GD, Fuel Process. Technol., 71(1), 181 (2001)
Collett TS, Geotimes, 49, 24 (2004)
Englezos P, Lee JD, Korean J. Chem. Eng., 22(5), 671 (2005)
P. L. McGuire Methane hydrate gas production: An assessment of conventional production technology as applied to hydrate gas recovery, Los Alamos National Laboratory, Los Alamos (1981).
Holder GD, Angert PF, In Simulation of gas production from a reservoir containing both gas hydrates and free natural gas, SPE annual technical conference and exhibition, Society of Petroleum Engineers (1982).
Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S, J. Chem. Eng. Jpn., 29(3), 478 (1996)
Hirohama S, Shimoyama Y, Wakabayashi A, Tatsuta S, Nishida N, J. Chem. Eng. Jpn., 29(6), 1014 (1996)
Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA, Angew. Chem.-Int. Edit., 42(41), 5048 (2003)
Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA, Stud. Surf. Sci. Catal., 153, 495 (2004)
Ota M, Saito T, Aida T, Watanabe M, Sato Y, Smith RL, Inomata H, AIChE J., 53(10), 2715 (2007)
Geng CY, Wen H, Zhou H, J. Phys. Chem. A, 113(18), 5463 (2009)
Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, P. Natl. Acad. Sci. USA, 103(34), 12690 (2006)
Shin K, Park Y, Cha MJ, Park KP, Huh DG, Lee J, Kim SJ, Lee H, Energy Fuels, 22(5), 3160 (2008)
Koh DY, Kang H, Kim DO, Park J, Cha M, Lee H, ChemSusChem, 5(8), 1443 (2012)
Cha M, Shin K, Lee H, Moudrakovski IL, Ripmeester JA, Seo Y, Environ. Sci. Technol., 49(3), 1964 (2015)
Koh DY, Ahn YH, Kang H, Park S, Lee JY, Kim SJ, Lee J, Lee H, AIChE J., 61(3), 1004 (2015)
Dornan P, Alavi S, Woo T, J. Chem. Phys., 127(12), 124510 (2007)
Schoderbek D, Martin KL, Howard J, Silpngarmlert S, K, Hester, In North Slope hydrate fieldtrial: CO2/CH4 exchange, OTC Arctic Technology Conference, Offshore Technology Conference (2012).