ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 21, 2015
Accepted February 4, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Recent developments in scale-up of microfluidic emulsion generation via parallelization

1Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A., USA 2Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A., USA 3Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A., USA
Korean Journal of Chemical Engineering, June 2016, 33(6), 1757-1766(10), 10.1007/s11814-016-0041-6
downloadDownload PDF

Abstract

Microfluidics affords precise control over the flow of multiphasic fluids in micron-scale channels. By manipulating the viscous and surface tension forces present in multiphasic flows in microfluidic channels, it is possible to produce highly uniform emulsion droplets one at a time. Monodisperse droplets generated based on microfluidics are useful templates for producing uniform microcapsules and microparticles for encapsulation and delivery of active ingredients as well as living cells. Also, droplet microfluidics have been extensively exploited as a means to enable highthroughput biological screening and assays. Despite the promise droplet-based microfluidics hold for a wide range of applications, low production rate (<<10mL/hour) of emulsion droplets has been a major hindrance to widespread utilization at the industrial and commercial scale. Several reports have recently shown that one way to overcome this challenge and enable mass production of microfluidic droplets is to parallelize droplet generation, by incorporating a large number of droplet generation units (N>>100) and networks of fluid channels that distribute fluid to each of these generators onto a single chip. To parallelize droplet generation and, at the same time, maintain high uniformity of emulsion droplets, several considerations have to be made including the design of channel geometries to ensure even distribution of fluids to each droplet generator, methods for large-scale and uniform fabrication of microchannels, device materials for mechanically robust operation to withstand high-pressure injection, and development of commercially feasible fabrication techniques for three-dimensional microfluidic devices. We highlight some of the recent advances in the mass production of highly uniform microfluidics droplets via parallelization and discuss outstanding issues.

References

Kikuchi Y, Sato K, Ohki H, Kaneko T, Microvasc. Res., 44, 226 (1992)
Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM, J. Chromatogr., 593, 253 (1992)
Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM, Lab Chip, 6, 437 (2006)
Mazutis L, Griffiths AD, Lab Chip, 12, 1800 (2012)
Solvas XCI, deMello A, Chem. Commun., 47, 1936 (2011)
Jin SH, Jeong HH, Lee B, Lee SS, Lee CS, Lab Chip, 15, 3677 (2015)
Pang Y, Kim H, Liu ZM, Stone HA, Lab Chip, 14, 4029 (2014)
Sugiura S, Nakajima M, Iwamoto S, Seki M, Langmuir, 17(18), 5562 (2001)
Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA, Phys. Rev. Lett., 99, 094502 (2007)
Lee MH, Hribar KC, Brugarolas T, Kamat NP, Burdick JA, Lee D, Adv. Funct. Mater., 22(1), 131 (2012)
Joensson HN, Svahn HA, Angew. Chem.-Int. Edit., 51, 12176 (2012)
Jeong HH, Jin SH, Lee BJ, Kim T, Lee CS, Lab Chip, 15, 889 (2015)
Duraiswamy S, Khan SA, Nano Lett., 10, 3757 (2010)
Jung JH, Park TJ, Lee SY, Seo TS, Angew. Chem.-Int. Edit., 51, 5634 (2012)
Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Anal. Chem., 83, 8604 (2011)
Juul S, Ho YP, Koch J, Andersen FF, Stougaard M, Leong KW, Knudsen BR, ACS Nano, 5, 8305 (2011)
Koziej D, Floryan C, Sperling RA, Ehrlicher AJ, Issadore D, Westervelt R, Weitz DA, Nanoscale, 5, 5468 (2013)
Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA, Proc. Natl. Acad. Sci. U.S.A., 107, 6550 (2010)
Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML, Proc. Natl. Acad. Sci. U.S.A., 106, 14195 (2009)
Sjostrom SL, Bai YP, Huang MT, Liu ZH, Nielsen J, Joensson HN, Svahn HA, Lab Chip, 14, 806 (2014)
Muluneh M, Kim B, Buchsbaum G, Issadore D, Lab Chip, 14, 4638 (2014)
Barbier V, Willaime H, Tabeling P, Jousse F, Phys. Rev. E, 74 (2006)
Holtze C, J. Phys. D-Appl. Phys., 46 (2013)
Joscelyne SM, Tragardh G, J. Membr. Sci., 169(1), 107 (2000)
Vladisavljevic GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I, Adv. Drug Deliv. Rev., 65, 1626 (2013)
Lim J, Caen O, Vrignon J, Konrad M, Taly V, Baret JC, Biomicrofluidics, 9, 034101 (2015)
Sahin S, Schroen K, Lab Chip, 15, 2486 (2015)
Nisisako T, Ando T, Hatsuzawa T, Lab Chip, 12, 3426 (2012)
Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA, Lab Chip, 12, 802 (2012)
Muluneh M, Issadore D, Lab Chip, 13, 4750 (2013)
Jeong HH, Yelleswarapu VR, Yadavali S, Issadore D, Lee D, Lab Chip, 15, 4387 (2015)
Bardin D, Kendall MR, Dayton PA, Lee AP, Biomicrofluidics, 7, 034112 (2013)
Li W, Greener J, Voicu D, Kumacheva E, Lab Chip, 9, 2715 (2009)
Conchouso D, Castro D, Khan SA, Foulds IG, Lab Chip, 14, 3011 (2014)
Tetradis-Meris G, Rossetti D, de Torres CP, Cao R, Lian GP, Janes R, Ind. Eng. Chem. Res., 48(19), 8881 (2009)
McDonald JC, Whitesides GM, Acc. Chem. Res., 35, 491 (2002)
Nge PN, Rogers CI, Woolley AT, Chem. Rev., 113(4), 2550 (2013)
Fiorini GS, Chiu DT, Biotechniques, 38, 429 (2005)
Nisisako T, Torii T, Lab Chip, 8, 287 (2008)
Xu Y, Wang CX, Li LX, Matsumoto N, Jang K, Dong YY, Mawatari K, Suga T, Kitamori T, Lab Chip, 13, 1048 (2013)
Kotowski J, Navratil V, Slouka Z, Snita D, Microelectron. Eng., 110, 441 (2013)
Saarela V, Haapala M, Kostiainen R, Kotiaho T, Franssila S, Lab Chip, 7, 644 (2007)
Zhai HY, Yuan KS, Yu X, Chen ZG, Liu ZP, Su ZH, Electrophoresis, 36(20), 2509 (2015)
Saarela V, Haapala M, Kostiainen R, Kotiaho T, Franssila S, J. Micromech. Microeng., 19, 055001 (2009)
Kolari K, Saarela V, Franssila S, J. Micromech. Microeng., 18 (2008)
Baram A, Naftali M, J. Micromech. Microeng., 16, 2287 (2006)
Giboz J, Copponnex T, Mele P, J. Micromech. Microeng., 17, R96 (2007)
Tanzi S, Matteucci M, Christiansen TL, Friis S, Christensen MT, Garnaes J, Wilson S, Kutchinsky J, Taboryski R, Lab Chip, 13, 4784 (2013)
Abgrall P, Low LN, Nguyen NT, Lab Chip, 7, 520 (2007)
Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK, Lab Chip, 15, 2364 (2015)
Jun MBG, Liu XY, DeVor RE, Kapoor SG, J. Manuf. Sci. E-T Asme., 128, 893 (2006)
Becker H, Gartner C, Electrophoresis, 21(1), 12 (2000)
Heckele M, Guber AE, Truckenmuller R, Microsyst. Technol., 12, 1031 (2006)
Tsao CW, DeVoe DL, Microfluid. Nanofluid., 6, 1 (2009)
Roy E, Galas JC, Veres T, Lab Chip, 11, 3193 (2011)
Yoon SC, Horita Z, Kim HS, J. Mater. Process. Technol., 201, 32 (2008)
Yoon SC, Jeong HG, Lee S, Kim HS, Comp. Mater. Sci., 77, 202 (2013)
Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL, Lab Chip, 7, 499 (2007)
Saharil F, Carlborg CF, Haraldsson T, van der Wijngaart W, Lab Chip, 12, 3032 (2012)
Sia SK, Whitesides GM, Electrophoresis, 24(21), 3563 (2003)
Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA, Sens. Actuators B-Chem., 89, 315 (2003)
Zhou JW, Ellis AV, Voelcker NH, Electrophoresis, 31(1), 2 (2010)
Thompson BL, Ouyang YW, Duarte GRM, Carrilho E, Krauss ST, Landers JP, Nat. Protoc., 10, 875 (2015)
Melchels FPW, Feijen J, Grijpma DW, Biomaterials, 31, 6121 (2010)
Waldbaur A, Rapp H, Lange K, Rapp BE, Anal. Methods, 3, 2681 (2011)
Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC, Anal. Chem., 86, 3124 (2014)
O’Neill PF, Azouz AB, Vazquez M, Liu J, Marczak S, Slouka Z, Chang HC, Diamond D, Brabazon D, Biomicrofluidics, 8, 052112 (2014)
Au AK, Lee W, Folch A, Lab Chip, 14, 1294 (2014)
Comina G, Suska A, Filippini D, Lab Chip, 14, 424 (2014)
Ho CMB, Ng SH, Li KHH, Yoon YJ, Lab Chip, 15, 3627 (2015)
Bhargava KC, Thompson B, Malmstadt N, Proc. Natl. Acad. Sci. U. S. A., 111, 15013 (2014)
Femmer T, Jans A, Eswein R, Anwar N, Moeller M, Wessling M, Kuehne AJ, ACS Appl. Mater. Interfaces, 7, 12635 (2015)
Tran TM, Cater S, Abate AR, Biomicrofluidics, 8, 016502 (2014)
Arriaga LR, Amstad E, Weitz DA, Lab Chip, 15, 3335 (2015)
Kim SC, Sukovich DJ, Abate AR, Lab Chip, 15, 3163 (2015)
Brugarolas T, Tu FQ, Lee D, Soft Matter, 9, 9046 (2013)
Datta SS, Abbaspourrad A, Amstad E, Fan J, Kim SH, Romanowsky M, Shum HC, Sun BJ, Utada AS, Windbergs M, Zhou SB, Weitz DA, Adv. Mater., 26(14), 2205 (2014)
Zhao CX, Adv. Drug Deliv. Rev., 65, 1420 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로