ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 9, 2015
Accepted January 25, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Catalytic oxidation and capture of elemental mercury from simulated flue gas using Mn-doped titanium dioxide

School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing 210042, P. R. China 1Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210042, P. R. China 2Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, Nanjing 210042, P. R. China
Korean Journal of Chemical Engineering, June 2016, 33(6), 1823-1830(8), 10.1007/s11814-016-0026-5
downloadDownload PDF

Abstract

Titanium dioxide (TiO2) and Mn-doped TiO2 (Mn(x)-TiO2) were synthesized in a sol-gel method and characterized by BET surface area analysis, X.ray diffraction (XRD) and X.ray photoelectron spectroscopy (XPS). Gasphase elemental mercury (Hg0) oxidation and capture by the Mn-doped TiO2 catalyst was studied in the simulated flue gas in a fixed-bed reactor. The investigation of the influence of Mn loading, flue gas components (SO2, NO, O2, and H2O) showed that the Hg0 capture capability of Mn(x)-TiO2 was much higher than that of pure TiO2. The addition of Mn inhibits the grain growth of TiO2 and improves the porous structure parameters of Mn(x)-TiO2. Excellent Hg0 oxidation performance was observed with the catalyst with 10% of Mn loading ratio and 97% of Hg0 oxidation was achieved under the test condition (120 ℃, N2/6%O2). The presence of O2 and NO had positive effect on the Hg0 removal efficiency, while mercury capture capacity was reduced in the presence of SO2 and H2O. XPS spectra results reveal that the mercury is mainly present in its oxidized form (HgO) in the spent catalyst and Mn4+ doped on the surface of TiO2 is partially converted into Mn3+ which indicates Mn and the lattice oxygen are involved in Hg0 oxidation reactions.

References

Wan Q, Duan L, He KB, Li JH, Chem. Eng. J., 170(2-3), 512 (2011)
Wu Y, Wang SX, Streets DG, Hao JM, Chan M, Jiang JK, Environ. Sci. Technol., 40, 5312 (2006)
Milford JB, Pienciak A, Environ. Sci. Technol., 43, 2669 (2009)
U.S. Environmental Protection Agency. Air Toxics Standards forUtilities, http://www.epa.gov/airquality/powerplanttoxics/actions.html (Accessed on June 2012).
Tan ZQ, Sun LS, Xiang J, Zeng HC, Liu ZH, Hu S, Qiu JR, Carbon, 50, 362 (2012)
Tang TM, Xu JA, Lu RJ, Wo JJ, Xu XH, Fuel, 89(12), 3613 (2010)
Yang H, Pan WP, J. Environ. Sci., 19(2), 181 (2007)
Granite EJ, Pennline HW, Hargis RA, Ind. Eng. Chem. Res., 39(4), 1020 (2000)
Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP, Environ. Sci. Technol., 44, 426 (2009)
He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG, Energy Fuels, 27(8), 4832 (2013)
Yang SJ, Yan NQ, Guo YF, Wu DQ, He HP, Qu Z, Li JF, Zhou Q, Jia JP, Environ. Sci. Technol., 45, 1540 (2011)
Xie JK, Yan NQ, Yang SJ, Qu Z, Chen WM, Zhang WQ, Li KH, Liu P, Jia JJS, Res. Chem. Intermed., 38, 2511 (2012)
Ji L, Sreekanth PM, Smirniotis PG, Thiel SW, Pinto NG, Energy Fuels, 22(4), 2299 (2008)
Granite EJ, Pennline HW, Hargis RA, Ind. Eng. Chem. Res., 39(4), 1020 (2000)
Li Y, Murphy P, Wua CY, Fuel Process. Technol., 89(6), 567 (2008)
Liu H, Yu XQ, Yang HM, Chem. Eng. J., 243, 465 (2014)
Gionco C, Paganini MC, Agnoli S, Reeder AE, Giamello EJ, J. Mater. Chem. A, 1, 10918 (2013)
Yu JG, Ran JR, Energy Environ. Sci., 4, 1364 (2011)
Kim SS, Hong SC, J. Air Waste Manage., 62, 362 (2012)
Park E, Le H, Chin S, Kim J, Bae GN, Jurng J, J. Porous Mat., 19, 877 (2012)
Pitoniak E, Wu CY, Mazyck DW, Powers KW, Sigmund W, Environ. Sci. Technol., 39, 1269 (2005)
Kamata H, Ueno S, Naito T, Yamaguchi A, Ito S, Catal. Commun., 9, 2441 (2008)
Qiao SH, Chen J, Li JF, Qu Z, Liu P, Yan NQ, Jia JQ, Ind. Eng. Chem. Res., 48(7), 3317 (2009)
Kong FH, Qiu JR, Liu H, Zhao R, Ai ZH, J. Environ. Sci., 23, 699 (2011)
Li HL, Wu CY, Li Y, Li LQ, Zhao YC, Zhang JY, Chem. Eng. J., 219, 319 (2013)
He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG, J. Phys. Chem. C, 115, 24300 (2011)
Norton GA, Yang HQ, Brown RC, Laudal DL, Dunham GE, Erjavec J, Fuel, 82(2), 107 (2003)
Li HL, Wu CY, Li Y, Li LQ, Zhao YC, Zhang JY, J. Hazard. Mater., 243, 117 (2012)
Wen XY, Li CT, Fan XP, Gao HL, Zhang W, Chen L, Zeng GM, Zhao YP, Energy Fuels, 25(7), 2939 (2011)
Li Y, Murphy PD, Wu CY, Powers KW, Bonzongo JCJ, Environ. Sci. Technol., 42, 5304 (2008)
Li HL, Li Y, Wu CY, Zhang JY, Chem. Eng. J., 169(1-3), 186 (2011)
Li HL, Li Y, Wu CY, Zhang JY, Chem. Eng. J., 169(1-3), 186 (2011)
Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP, Environ. Sci. Technol., 44, 426 (2010)
Hu CX, Zhou JS, Luo ZY, Cen KF, Energy Fuels, 25, 154 (2010)
Wu ZB, Jin RB, Wang HQ, Liu Y, Catal. Commun., 10, 935 (2009)
Kim MH, Ham SW, Lee JB, Appl. Catal. B: Environ., 99(1-2), 272 (2010)
Xu WQ, He H, Yu YB, J. Phys. Chem. C, 113, 4426 (2009)
Li HL, Wu CY, Li Y, Zhang JY, Environ. Sci. Technol., 45, 7394 (2011)
Zhou JS, Hou WH, Qi P, Gao X, Luo ZY, Cen KF, Environ. Sci. Technol., 47, 10056 (2013)
Olson ES, Thompson JS, Pavlish JH, Prepr. ACS Div. Fuel Chem., 45, 560 (2000)
Guo S, Yang J, Liu Z, Xiao Y, Korean J. Chem. Eng., 26(2), 560 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로