Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 1, 2015
Accepted January 25, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Extraction of p-coumaric acid from agricultural residues and separation using ‘sugaring out’
1Chemical Engineering Department, Visvesvaraya National Institute of Technology, Nagpur 440010, India 2KIT’ College of Engineering Kolhapur, M.S. India 3Department of Biotechnology, Sinhgad College of Engineering, Vadgaon (Bk), Pune 411041, India 4Department of Agriculture and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana- IL, 61801, U.S.A., USA 5Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana- IL, 61801, U.S.A., USA 6Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, U.S.A., USA
pradipdhamole@gmail.com
Korean Journal of Chemical Engineering, June 2016, 33(6), 1860-1864(5), 10.1007/s11814-016-0020-y
Download PDF
Abstract
We investigated the extraction of para-coumaric acid (pCA) from different agriculture residues (corn stover, sugarcane bagasse, sorghum stalk, pearl millet stalk, green gram shell, groundnut shell, sesame shell) using sugarcane bagasse alkaline hydrolysis and separation of pCA using sugaring out - a new phase separation method. Primary screening of different feed stocks was by alkaline hydrolysis with 2M NaOH for 6 h at room temperature. Sugarcane baggase resulted into significant amount of pCA (1.1 g/L) and small amount of ferulic acid (FA) (0.23 g/L). The optimized alkaline hydrolysis conditions (2 M NaOH and 16 h) resulted into maximum pCA release of 2.0 g/L. The pCA was separated from alkaline hydrolysate using sugaring out, a two phase separation method that results in aqueous phase and the organic solvent (acetonitrile) phase. Sugaring-out separated more than 90% of the pCA from the alkaline hydrolysate. Results of HPLC using standard pCA and FA showed that the main component of the separated top (organic solvent) phase was pCA rather than FA.
References
Ferguson LR, Lim IF, Pearson AE, Ralph J, Harris PJ, Mutation Res., 542, 49 (2003)
Ferguson LR, Zhu ST, Harris PJ, Mol. Res. Food Nutrition, 49, 585 (2005)
Bodini SF, Manfredini S, Epp M, Valentini S, Santori F, Lett. Appl. Microbiol., 49, 551 (2009)
Abdel-Wahab MH, El-Mahdy MA, Abd-Ellah MF, Helal GK, Khalifa F, Hamada FMA, Pharmacological Res., 48, 461 (2003)
Lodovici M, Raimondi L, Guglielmi F, Gemignani S, Dolara P, Toxicology, 184, 141 (2003)
Kim S, Jeong Y, Jung ID, Lee JS, Lee CM, Yoon MS, Int. Immunopharmacol., 7, 805 (2007)
An SM, Lee SI, Choi SW, Moon SW, Boo YC, British J. Derm., 159, 292 (2008)
Ji R, Chen ZX, Corvini PEX, Kappler A, Brune A, Haider K, Schaffer A, Chemosphere, 60, 1169 (2008)
Sachan A, Ghosh S, Mitra A, Lett. Appl. Microbiol., 42, 35 (2006)
Liu HL, Huang XF, Wan X, Kong LY, Helvetica Chimica Acta, 90, 1117 (2007)
Lawther JM, Sun RC, Banks WB, Ind. Crop. Prod., 5, 291 (1996)
Lawther JM, Sun RC, Banks WB, Ind. Crop. Prod., 5, 291 (1996)
Faulds CB, Williams G, J. Sci. Food Agric., 79, 393 (1999)
Xu F, Sun RC, Sun JX, Liu CF, He BH, Fan JS, Anal. Chim. Acta, 552, 207 (2005)
Soto ML, Moure A, Dominguez H, Parajo JC, J. Food Eng., 105(1), 1 (2011)
Mussatto SI, Dragone G, Roberto IC, Ind. Crop. Prod., 25, 231 (2007)
Ou SY, Luo YL, Huang CH, Jackson M, Innovative Food Sci. Emerging Technologies, 10, 253 (2009)
Zautsen RRM, Maugeri F, Vaz-Rossell CE, Straathof AJJ, van der Wielen LAM, de Bont JAM, Biotechnol. Bioeng., 102(5), 1354 (2009)
Dhamole PB, Wang B, Feng H, J. Chem. Technol. Biotechnol., 80, 1744 (2013)
Dhamole PB, Demanna D, Desai SA, Appl. Biochem. Biotechnol., 174(2), 564 (2014)
Hasmann FA, Santos VC, Gurpilhares DB, Pessoa-Junior A, Roberto IC, J. Chem. Technol. Biotechnol., 83(2), 167 (2008)
Zhao J, Ou SY, Ding SH, Wang Y, Wang Y, Chem. Eng. Res. Des., 89(10A), 2176 (2011)
Dhamole PB, Mahajan P, Feng H, Process Biochem., 45(10), 1672 (2010)
Dhamole PB, Mahajan P, Feng H, J. Chem. Eng. Data, 55(9), 3803 (2010)
Wang B, Ezejias T, Feng H, Blaschek H, Chem. Eng. Sci., 63(9), 2595 (2008)
Wang B, Feng H, Ezeji T, Blaschek H, Chem. Eng. Technol., 31(12), 1869 (2008)
Torre P, Aliakbarian B, Rivas B, Dominguez JM, Converti A, Biochem. Eng. J., 40, 500 (2008)
Tilay A, Bule M, Kishenkumar J, Annapure U, J. Agric. Food Chem., 56, 7644 (2008)
Ferguson LR, Zhu ST, Harris PJ, Mol. Res. Food Nutrition, 49, 585 (2005)
Bodini SF, Manfredini S, Epp M, Valentini S, Santori F, Lett. Appl. Microbiol., 49, 551 (2009)
Abdel-Wahab MH, El-Mahdy MA, Abd-Ellah MF, Helal GK, Khalifa F, Hamada FMA, Pharmacological Res., 48, 461 (2003)
Lodovici M, Raimondi L, Guglielmi F, Gemignani S, Dolara P, Toxicology, 184, 141 (2003)
Kim S, Jeong Y, Jung ID, Lee JS, Lee CM, Yoon MS, Int. Immunopharmacol., 7, 805 (2007)
An SM, Lee SI, Choi SW, Moon SW, Boo YC, British J. Derm., 159, 292 (2008)
Ji R, Chen ZX, Corvini PEX, Kappler A, Brune A, Haider K, Schaffer A, Chemosphere, 60, 1169 (2008)
Sachan A, Ghosh S, Mitra A, Lett. Appl. Microbiol., 42, 35 (2006)
Liu HL, Huang XF, Wan X, Kong LY, Helvetica Chimica Acta, 90, 1117 (2007)
Lawther JM, Sun RC, Banks WB, Ind. Crop. Prod., 5, 291 (1996)
Lawther JM, Sun RC, Banks WB, Ind. Crop. Prod., 5, 291 (1996)
Faulds CB, Williams G, J. Sci. Food Agric., 79, 393 (1999)
Xu F, Sun RC, Sun JX, Liu CF, He BH, Fan JS, Anal. Chim. Acta, 552, 207 (2005)
Soto ML, Moure A, Dominguez H, Parajo JC, J. Food Eng., 105(1), 1 (2011)
Mussatto SI, Dragone G, Roberto IC, Ind. Crop. Prod., 25, 231 (2007)
Ou SY, Luo YL, Huang CH, Jackson M, Innovative Food Sci. Emerging Technologies, 10, 253 (2009)
Zautsen RRM, Maugeri F, Vaz-Rossell CE, Straathof AJJ, van der Wielen LAM, de Bont JAM, Biotechnol. Bioeng., 102(5), 1354 (2009)
Dhamole PB, Wang B, Feng H, J. Chem. Technol. Biotechnol., 80, 1744 (2013)
Dhamole PB, Demanna D, Desai SA, Appl. Biochem. Biotechnol., 174(2), 564 (2014)
Hasmann FA, Santos VC, Gurpilhares DB, Pessoa-Junior A, Roberto IC, J. Chem. Technol. Biotechnol., 83(2), 167 (2008)
Zhao J, Ou SY, Ding SH, Wang Y, Wang Y, Chem. Eng. Res. Des., 89(10A), 2176 (2011)
Dhamole PB, Mahajan P, Feng H, Process Biochem., 45(10), 1672 (2010)
Dhamole PB, Mahajan P, Feng H, J. Chem. Eng. Data, 55(9), 3803 (2010)
Wang B, Ezejias T, Feng H, Blaschek H, Chem. Eng. Sci., 63(9), 2595 (2008)
Wang B, Feng H, Ezeji T, Blaschek H, Chem. Eng. Technol., 31(12), 1869 (2008)
Torre P, Aliakbarian B, Rivas B, Dominguez JM, Converti A, Biochem. Eng. J., 40, 500 (2008)
Tilay A, Bule M, Kishenkumar J, Annapure U, J. Agric. Food Chem., 56, 7644 (2008)