Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 30, 2015
Accepted January 30, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Crystal growth of ionic semiclathrate hydrate formed at interface between CO2+N2 gas mixture and tetrabutylammonium bromide aqueous solution
Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
rohmura@mech.keio.ac.jp
Korean Journal of Chemical Engineering, June 2016, 33(6), 1942-1947(6), 10.1007/s11814-016-0035-4
Download PDF
Abstract
This study reports a visual observation of the formation and growth of ionic semiclathrate hydrate on the surface of a Tetrabutylammonium bromide (TBAB) aqueous solution and CO2+N2 gas mixture. The composition of CO2+N2 gas mixture was 20 : 80. The experimental temperature range was from 280 K to 290 K, under the pressures of 2.3MPa and 4.7MPa, at wTBAB=0.10 and wTBAB=0.40, where wTBAB denotes the mass fraction of TBAB in the aqueous solution. At wTBAB=0.40, the hydrate crystals were initially observed to grow within the droplet, and followed by lateral growth at the droplet surface; but at wTBAB=0.10, the hydrate crystals grew exclusively in the liquid phase and did not cover the droplet surface. Two types of different crystals with different sizes were clearly observed.
Keywords
References
IPCC. Climate Change 2014, Mitigation of climate change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge University Press, Cambridge (2014).
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Mori YH, J. Chem. Ind. Eng., 54, 1 (2003)
Aifaa M, Kodama T, Ohmura R, Cryst. Growth Des., 15, 559 (2015)
Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature, 434, 743 (2005)
Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA, J. Phys. Chem. A, 113(23), 6415 (2009)
Brewer PG, Friederich C, Peltzer ET, Orr FM, Science, 284(5416), 943 (1999)
Ohmura R, Mori YH, Environ. Sci. Technol., 32, 1120 (1998)
Tohidi B, Yang J, Salehabadi M, Anderson R, Chapoy A, Environ. Sci. Technol., 44, 1509 (2010)
Ogawa T, Ito T, Watanabe K, Tahara K, Hiraoka R, Ochiai J, Ohmura R, Mori YH, Appl. Therm. Eng., 26, 2157 (2006)
Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, Natl. Acad. Sci. U.S.A., 34, 12690 (2006)
Seo YT, Moudrakovski IL, Ripmeester JA, Lee JW, Lee H, Environ. Sci. Technol., 39, 2315 (2005)
Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, 2nd Ed., Wiley, Hoboken, NJ, 196 (2006).
Darbouret M, Cournil M, Herri JM, Int. J. Refrig., 28, 663 (2005)
Zhong DL, Englezos P, Energy Fuels, 26(4), 2098 (2012)
Zhong DL, Ye Y, Yang C, J. Chem. Eng. Data, 56(6), 2899 (2011)
Babu P, Chin WI, Kumar R, Linga P, Ind. Eng. Chem. Res., 53(12), 4878 (2014)
Li S, Fan S, Wang J, Lang X, Liang D, J. Nat. Gas Chem., 18, 15 (2009)
Belandria V, Mohammadi AH, Richon D, Chem. Eng. Sci., 84, 40 (2012)
Lee Y, Lee S, Lee J, Seo Y, Chem. Eng. J., 246, 20 (2014)
Deschamps J, Dalmazzone D, J. Therm. Anal. Calorim., 98, 113 (2009)
Oyama H, Shimada W, Ebinuma T, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Fluid Phase Equilib., 234(1-2), 131 (2005)
Veluswamy HP, Yang T, Linga P, Cryst. Growth Des., 14, 1950 (2014)
Koyanagi S, Ohmura R, Cryst. Growth Des., 13, 2087 (2013)
Akiba H, Ueno H, Ohmura R, Cryst. Growth Des., 15, 3963 (2015)
Chapoy A, Anderson R, Tohidi B, J. Am. Chem. Soc., 129(4), 746 (2007)
Arjmandi M, Chapoy A, Tohidi B, J. Chem. Eng. Data, 52(6), 2153 (2007)
Meysel P, Oellrich L, Bishnoi PR, Clarke MA, J. Chem. Thermodyn., 43(10), 1475 (2011)
Kim S, Seo Y, Appl. Energy, 154, 987 (2015)
Muromachi S, Udachin KA, Shin K, Alavi S, Moudrakovski IL, Ohmura R, Ripmeester JA, Chem. Commun., 50, 11476 (2014)
Sato K, Tokutomi H, Ohmura R, Fluid Phase Equilib., 337, 115 (2013)
Tanaka R, Sakemoto R, Ohmura R, Cryst. Growth Des., 9, 2529 (2009)
Saito K, Kishimoto M, Tanaka R, Ohmura R, Cryst. Growth Des., 11, 295 (2011)
Georgiadis A, Maitland G, Trusler JPM, Bismarck A, J. Chem. Eng. Data, 55(10), 4168 (2010)
Akiba H, Ohmura R, J. Chem. Thermodyn., 92, 72 (2015)
Yan W, Zhao GY, Chen GJ, Guo TM, J. Chem. Eng. Data, 46, 1544 (2001)
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Mori YH, J. Chem. Ind. Eng., 54, 1 (2003)
Aifaa M, Kodama T, Ohmura R, Cryst. Growth Des., 15, 559 (2015)
Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature, 434, 743 (2005)
Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA, J. Phys. Chem. A, 113(23), 6415 (2009)
Brewer PG, Friederich C, Peltzer ET, Orr FM, Science, 284(5416), 943 (1999)
Ohmura R, Mori YH, Environ. Sci. Technol., 32, 1120 (1998)
Tohidi B, Yang J, Salehabadi M, Anderson R, Chapoy A, Environ. Sci. Technol., 44, 1509 (2010)
Ogawa T, Ito T, Watanabe K, Tahara K, Hiraoka R, Ochiai J, Ohmura R, Mori YH, Appl. Therm. Eng., 26, 2157 (2006)
Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, Natl. Acad. Sci. U.S.A., 34, 12690 (2006)
Seo YT, Moudrakovski IL, Ripmeester JA, Lee JW, Lee H, Environ. Sci. Technol., 39, 2315 (2005)
Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, 2nd Ed., Wiley, Hoboken, NJ, 196 (2006).
Darbouret M, Cournil M, Herri JM, Int. J. Refrig., 28, 663 (2005)
Zhong DL, Englezos P, Energy Fuels, 26(4), 2098 (2012)
Zhong DL, Ye Y, Yang C, J. Chem. Eng. Data, 56(6), 2899 (2011)
Babu P, Chin WI, Kumar R, Linga P, Ind. Eng. Chem. Res., 53(12), 4878 (2014)
Li S, Fan S, Wang J, Lang X, Liang D, J. Nat. Gas Chem., 18, 15 (2009)
Belandria V, Mohammadi AH, Richon D, Chem. Eng. Sci., 84, 40 (2012)
Lee Y, Lee S, Lee J, Seo Y, Chem. Eng. J., 246, 20 (2014)
Deschamps J, Dalmazzone D, J. Therm. Anal. Calorim., 98, 113 (2009)
Oyama H, Shimada W, Ebinuma T, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Fluid Phase Equilib., 234(1-2), 131 (2005)
Veluswamy HP, Yang T, Linga P, Cryst. Growth Des., 14, 1950 (2014)
Koyanagi S, Ohmura R, Cryst. Growth Des., 13, 2087 (2013)
Akiba H, Ueno H, Ohmura R, Cryst. Growth Des., 15, 3963 (2015)
Chapoy A, Anderson R, Tohidi B, J. Am. Chem. Soc., 129(4), 746 (2007)
Arjmandi M, Chapoy A, Tohidi B, J. Chem. Eng. Data, 52(6), 2153 (2007)
Meysel P, Oellrich L, Bishnoi PR, Clarke MA, J. Chem. Thermodyn., 43(10), 1475 (2011)
Kim S, Seo Y, Appl. Energy, 154, 987 (2015)
Muromachi S, Udachin KA, Shin K, Alavi S, Moudrakovski IL, Ohmura R, Ripmeester JA, Chem. Commun., 50, 11476 (2014)
Sato K, Tokutomi H, Ohmura R, Fluid Phase Equilib., 337, 115 (2013)
Tanaka R, Sakemoto R, Ohmura R, Cryst. Growth Des., 9, 2529 (2009)
Saito K, Kishimoto M, Tanaka R, Ohmura R, Cryst. Growth Des., 11, 295 (2011)
Georgiadis A, Maitland G, Trusler JPM, Bismarck A, J. Chem. Eng. Data, 55(10), 4168 (2010)
Akiba H, Ohmura R, J. Chem. Thermodyn., 92, 72 (2015)
Yan W, Zhao GY, Chen GJ, Guo TM, J. Chem. Eng. Data, 46, 1544 (2001)