Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 30, 2015
Accepted February 11, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Coupling conversion of methanol and 1-butylene to propylene on HZSM-5 molecular sieve catalysts prepared by different methods
School of Chemical Engineering, Northwest University, No.229, Taibai North Road, Xi’an, 710069, Shaanxi, China
Korean Journal of Chemical Engineering, July 2016, 33(7), 2097-2106(10), 10.1007/s11814-016-0047-0
Download PDF
Abstract
A series of HZSM-5 catalysts were synthesized by different methods. The physicochemical properties of the HZSM-5 catalysts were characterized by XRD, SEM, N2 isothermal adsorption-desorption, NH3-TPD, Py-IR and TGA, respectively. The results indicated that different preparation conditions lead to different morphologies, textures and the distribution of acid sites. The nanosized HZSM-5 catalysts exhibited better catalytic reactivity and coke capacity than the micro-sized HZSM-5 because nanosized HZSM-5 had larger specific surface area, higher pore volume, more exposed channels and more accessible acid sites. The large particles of NZ-3 in a reasonable range and the smooth surface were conducive to product diffusion; therefore, NZ-3 exhibited higher specific propylene yield and stability than the other nanosized catalysts. The moderate density and distribution of acid sites on NZ-3 also favored the formation of propylene.
References
Nowak S, Gunshel H, Martin A, Anders K, Lucke B, Proceedings of the 9th International Congress on Catalysis, 4, 1735 (1988)
Aguayo AT, Gayubo AG, Ateka A, Gamero M, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 51(40), 13073 (2012)
Martin A, Nowak S, Lucke B, Gunschel HB, Appl. Catal., 50, 149 (1989)
Wang Z, Jiang G, Zhao Z, Feng X, Duan A, Liu J, Energy Fuels, 24, 758 (2010)
Gong T, Zhang X, Bai T, Zhang QQ, Tao L, Qi M, Duan C, Zhang L, Ind. Eng. Chem. Res., 51(42), 13589 (2012)
Lucke B, Martin A, Gunschel H, Nowak S, Microporous Mesoporous Mater., 29, 145 (1999)
Gao Z, Cheng C, Tan C, Zhu H, J. Fuel Chem. Technol., 23, 349 (1995)
Mier D, Aguayo AT, Gayubo AG, Olazar M, Bilbao J, Chem. Eng. J., 160(2), 760 (2010)
Mier D, Aguayo AT, Gayubo AG, Olazar M, Bilbao J, Appl. Catal. A: Gen., 383(1-2), 202 (2010)
Chang FX, Wei YX, Liu XB, Zhao YF, Xu L, Sun Y, Zhang DZ, He YL, Liu ZM, Appl. Catal. A: Gen., 328(2), 163 (2007)
Jiang BB, Feng X, Yan LX, Jiang YT, Liao ZW, Wang JD, Yang YR, Ind. Eng. Chem. Res., 53(12), 4623 (2014)
Song C, Liu SL, Li XJ, Xie SJ, Liu ZG, Xu LY, Fuel Process. Technol., 126, 60 (2014)
Martin A, Nowak S, Lucke B, Appl. Catal., 57, 203 (1990)
Teng G, Zhao G, Xie Z, Chen Q, Chin. J. Catal., 25, 602 (2004)
Wu L, Liu Z, Xia L, Qiu M, Liu X, Zhu H, Sun Y, Chin. J. Catal., 34, 1348 (2013)
Firoozi M, Baghalha M, Asadi M, Catal. Commun., 10, 1582 (2009)
Wang X, Gao X, Dong M, Zhao H, Huang W, J. Energy Chem., 24, 490 (2015)
Aguado J, Serrano DP, Escola JM, Rodriguez JM, Microporous Mesoporous Mater., 75, 41 (2004)
Yu Q, Cui C, Zhang Q, Chen J, Li Y, Sun J, Li C, Cui Q, Yang C, Shan H, J. Energy Chem., 22, 761 (2013)
Duan C, Zhang X, Zhou R, Hua Y, Zhang L, Chen J, Fuel Process. Technol., 108, 31 (2013)
Zhang W, Burckle EC, Smirniotis PG, Microporous Mesoporous Mater., 33, 173 (1999)
Xin Q, Luo M, Research Methods for Modern Catalysis, Sci. Press, Beijing (2004).
Zhang X, Zhong J, Wang J, Zhang L, Gao J, Microporous Mesoporous Mater., 108, 13 (2008)
Emeis CA, J. Catal., 141, 347 (1993)
Epelde E, Ibanez M, Aguayo AT, Gayubo AG, Bilbao J, Castano P, Microporous Mesoporous Mater., 195, 284 (2014)
Aghamohammadi S, Haghighi M, Chem. Eng. J., 264, 359 (2015)
Delucas A, Canizares P, Duran A, Carrero A, Appl. Catal. A: Gen., 156(2), 299 (1997)
Guisnet M, Magnoux P, Appl. Catal., 54, 1 (1989)
Sun L, Wang XS, Li JC, Ma A, Guo HC, React. Kinet. Mech. Catal., 102, 235 (2011)
Qi GZ, Xie ZK, Yang WM, Zhong SQ, Liu HX, Zhang CF, Chen QL, Fuel Process. Technol., 88(5), 437 (2007)
Tosheva L, Valtchev VP, Chem. Mater., 17, 2494 (2005)
Kim SD, Noh SH, Park JW, Kim WJ, Microporous Mesoporous Mater., 92, 181 (2006)
Zhang PQ, Guo XW, Guo HC, Wang XS, J. Mol. Catal. A-Chem., 261(2), 139 (2007)
Serrano DP, van Grieken R, Melero JA, Garcia A, Vargas C, J. Mol. Catal. A-Chem., 318(1-2), 68 (2010)
Tanabe K, Misono M, Ono Y, Hattori H, New Solid Acids and Bases their Catalytic Properties, Kodausha, Tokyo (1989).
Kissin YV, Catal. Rev.-Sci. Eng., 43(1-2), 85 (2001)
Corma A, Orchilles AV, Microporous Mesoporous Mater., 35-36, 21 (2000)
Aguayo AT, Gayubo AG, Ateka A, Gamero M, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 51(40), 13073 (2012)
Martin A, Nowak S, Lucke B, Gunschel HB, Appl. Catal., 50, 149 (1989)
Wang Z, Jiang G, Zhao Z, Feng X, Duan A, Liu J, Energy Fuels, 24, 758 (2010)
Gong T, Zhang X, Bai T, Zhang QQ, Tao L, Qi M, Duan C, Zhang L, Ind. Eng. Chem. Res., 51(42), 13589 (2012)
Lucke B, Martin A, Gunschel H, Nowak S, Microporous Mesoporous Mater., 29, 145 (1999)
Gao Z, Cheng C, Tan C, Zhu H, J. Fuel Chem. Technol., 23, 349 (1995)
Mier D, Aguayo AT, Gayubo AG, Olazar M, Bilbao J, Chem. Eng. J., 160(2), 760 (2010)
Mier D, Aguayo AT, Gayubo AG, Olazar M, Bilbao J, Appl. Catal. A: Gen., 383(1-2), 202 (2010)
Chang FX, Wei YX, Liu XB, Zhao YF, Xu L, Sun Y, Zhang DZ, He YL, Liu ZM, Appl. Catal. A: Gen., 328(2), 163 (2007)
Jiang BB, Feng X, Yan LX, Jiang YT, Liao ZW, Wang JD, Yang YR, Ind. Eng. Chem. Res., 53(12), 4623 (2014)
Song C, Liu SL, Li XJ, Xie SJ, Liu ZG, Xu LY, Fuel Process. Technol., 126, 60 (2014)
Martin A, Nowak S, Lucke B, Appl. Catal., 57, 203 (1990)
Teng G, Zhao G, Xie Z, Chen Q, Chin. J. Catal., 25, 602 (2004)
Wu L, Liu Z, Xia L, Qiu M, Liu X, Zhu H, Sun Y, Chin. J. Catal., 34, 1348 (2013)
Firoozi M, Baghalha M, Asadi M, Catal. Commun., 10, 1582 (2009)
Wang X, Gao X, Dong M, Zhao H, Huang W, J. Energy Chem., 24, 490 (2015)
Aguado J, Serrano DP, Escola JM, Rodriguez JM, Microporous Mesoporous Mater., 75, 41 (2004)
Yu Q, Cui C, Zhang Q, Chen J, Li Y, Sun J, Li C, Cui Q, Yang C, Shan H, J. Energy Chem., 22, 761 (2013)
Duan C, Zhang X, Zhou R, Hua Y, Zhang L, Chen J, Fuel Process. Technol., 108, 31 (2013)
Zhang W, Burckle EC, Smirniotis PG, Microporous Mesoporous Mater., 33, 173 (1999)
Xin Q, Luo M, Research Methods for Modern Catalysis, Sci. Press, Beijing (2004).
Zhang X, Zhong J, Wang J, Zhang L, Gao J, Microporous Mesoporous Mater., 108, 13 (2008)
Emeis CA, J. Catal., 141, 347 (1993)
Epelde E, Ibanez M, Aguayo AT, Gayubo AG, Bilbao J, Castano P, Microporous Mesoporous Mater., 195, 284 (2014)
Aghamohammadi S, Haghighi M, Chem. Eng. J., 264, 359 (2015)
Delucas A, Canizares P, Duran A, Carrero A, Appl. Catal. A: Gen., 156(2), 299 (1997)
Guisnet M, Magnoux P, Appl. Catal., 54, 1 (1989)
Sun L, Wang XS, Li JC, Ma A, Guo HC, React. Kinet. Mech. Catal., 102, 235 (2011)
Qi GZ, Xie ZK, Yang WM, Zhong SQ, Liu HX, Zhang CF, Chen QL, Fuel Process. Technol., 88(5), 437 (2007)
Tosheva L, Valtchev VP, Chem. Mater., 17, 2494 (2005)
Kim SD, Noh SH, Park JW, Kim WJ, Microporous Mesoporous Mater., 92, 181 (2006)
Zhang PQ, Guo XW, Guo HC, Wang XS, J. Mol. Catal. A-Chem., 261(2), 139 (2007)
Serrano DP, van Grieken R, Melero JA, Garcia A, Vargas C, J. Mol. Catal. A-Chem., 318(1-2), 68 (2010)
Tanabe K, Misono M, Ono Y, Hattori H, New Solid Acids and Bases their Catalytic Properties, Kodausha, Tokyo (1989).
Kissin YV, Catal. Rev.-Sci. Eng., 43(1-2), 85 (2001)
Corma A, Orchilles AV, Microporous Mesoporous Mater., 35-36, 21 (2000)