Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 30, 2015
Accepted March 4, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Adsorptive removal of nickel(II) ions from aqueous environments using gum based and clay based polyaniline/chitosan nanobiocomposite beads and microspheres: Equilibrium, kinetic, thermodynamics and ex-situ studies
School of Bio Sciences and Technology, Environmental Biotechnology Division, VIT University, Vellore-632014, Tamil Nadu, India
Korean Journal of Chemical Engineering, July 2016, 33(7), 2114-2126(13), 10.1007/s11814-016-0071-0
Download PDF
Abstract
The present study was carried out using gum (Ga) based and clay (MMT) based nanobiocomposite beads and microspheres composed of polyaniline NPs (PANI) and chitosan (Ch) as adsorbent for the removal of Ni(II) ions from aqueous environments. Under optimized conditions maximum Ni(II) removal 98.12% was exhibited by clay based nanobiocomposite (PANI-Ch-MMT) beads followed by gum based nanobiocomposite (PANI-Ch-Ga) beads (95.02%), PANI-Ch-MMT microspheres (85.12%) and PANI-Ch-Ga microspheres (75.23%). Equilibrium studies suggested a homogeneous mode of Ni(II) adsorption. Better applicability of pseudo-first order kinetic model suggested physisorption as the underlying phenomenon. Thermodynamic studies showed that adsorption was endothermic and spontaneous. The mechanism of adsorption by PANI-Ch-MMT and PANI-Ch-Ga beads was elucidated using SEM, EDX and FT-IR analyses. Ex-situ studies showed a maximum Ni(II) removal of 80.55% from mining wastewater using PANI-Ch-MMT beads in column mode. Regeneration studies suggested that PANI-Ch-MMT beads could be consistently reused up to five cycles.
References
Unlu N, Ersoz M, J. Hazard. Mater., 136(2), 272 (2006)
Kwak IS, Won SW, Choi SB, Mao J, Kim S, Chung BW, Yun YS, Korean J. Chem. Eng., 28(3), 927 (2011)
He L, Wang BB, Liu DD, Qian KS, Xu HB, Korean J. Chem. Eng., 31(2), 343 (2014)
Kandah MI, Meunier JL, J. Hazard. Mater., 146(1-2), 283 (2007)
Parker SP, Encyclopedia of Environmental Science, 2nd Ed. McGraw Hill, New York (1980).
Fouladgar M, Beheshti M, Sabzyan H, J. Mol. Liq., 211, 1060 (2015)
Can MY, Kaya Y, Algur OF, Bioresour. Technol., 97(14), 1761 (2006)
Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M, Khandanlou R, J. Taiwan Inst. Chem. Eng., 49, 192 (2015)
Celis R, Adelino MA, Hermosin MC, Cornejo J, J. Hazard. Mater., 209, 67 (2012)
Halim ESA, Deyab SSA, Carbohydr. Polym., 84, 454 (2011)
Nitayaphat W, Jintakosol T, J. Clean Prod., 87, 850 (2015)
Banerjee SS, Chen DH, J. Hazard. Mater., 147(3), 792 (2007)
Wu P, Zhang Q, Dai Y, Zhu N, Dang Z, Li P, Wu J, Wang X, Geoderma, 164, 215 (2011)
Nesic AR, Velickovic SJ, Antonovic DG, J. Hazard. Mater., 209, 256 (2012)
Stejskal J, Sapurina I, Trchova M, Prog. Polym. Sci, 35, 1420 (2010)
Janaki V, Oh BT, Shanthi K, Lee KJ, Ramasamy AK, Kannan SK, Synth. Met., 162, 974 (2012)
Ahmed SM, El-Dib FI, El-Gendy NS, Sayed WM, El-Khodary M, Arab. J. Chem., DOI:10.1016/j.arabjc.2012.04.049. (2012)
Das D, Varghese LR, Das N, Desalination, 360, 35 (2015)
Zhou LM, Wang YP, Liu ZR, Huang QW, J. Hazard. Mater., 161(2-3), 995 (2009)
Khalid ZE, Sayed GOE, Darweesh RS, Inter. J. Min. Proc., 120, 26 (2013)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
Freundlich HMF, J. Phys. Chem. B, 57, 385 (1906)
Dubinin MM, Chem. Rev., 60, 235 (1960)
Ho YS, Scientometrics, 59, 171 (2004)
Ho YS, Water Res., 40, 119 (2006)
Das D, Basak G, Lakshmi V, Das N, Biochem. Eng. J., 64, 30 (2012)
Khan SA, Rehman R, Khan MA, Waste Manage., 15, 271 (1995)
Vijayaraghavan K, Balasubramanian R, Chem. Eng. J., 163(3), 337 (2010)
Vinodhini V, Das N, Desalination, 264(1-2), 9 (2010)
Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M, Process Biochem., 41(3), 609 (2006)
Malkoc E, Nuhoglu Y, J. Hazard. Mater., 127(1-3), 120 (2005)
Malkoc E, J. Hazard. Mater., 137(2), 899 (2006)
Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy AK, Kannan SK, Carbohydr. Polym., 90, 1437 (2012)
Jeon C, Cha JH, J. Ind. Eng. Chem., 24, 107 (2014)
Charumathi D, Das N, Desalination, 285, 22 (2012)
Zambrano JB, Szygula A, Ruiz M, Sastre AM, Guibal E, J. Environ. Manage., 91, 2669 (2010)
Das D, Varshini CJS, Das N, Miner. Eng., 69, 40 (2014)
Runtti H, Tuomikoskia S, Kangas T, Lassi U, Kuokkanen T, Ramo J, J. Water Process. Eng., 4, 12 (2014)
Bhatnagar A, Minocha AK, Colloids Surf. B: Biointerfaces, 76, 544 (2010)
Kwak IS, Won SW, Choi SB, Mao J, Kim S, Chung BW, Yun YS, Korean J. Chem. Eng., 28(3), 927 (2011)
He L, Wang BB, Liu DD, Qian KS, Xu HB, Korean J. Chem. Eng., 31(2), 343 (2014)
Kandah MI, Meunier JL, J. Hazard. Mater., 146(1-2), 283 (2007)
Parker SP, Encyclopedia of Environmental Science, 2nd Ed. McGraw Hill, New York (1980).
Fouladgar M, Beheshti M, Sabzyan H, J. Mol. Liq., 211, 1060 (2015)
Can MY, Kaya Y, Algur OF, Bioresour. Technol., 97(14), 1761 (2006)
Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M, Khandanlou R, J. Taiwan Inst. Chem. Eng., 49, 192 (2015)
Celis R, Adelino MA, Hermosin MC, Cornejo J, J. Hazard. Mater., 209, 67 (2012)
Halim ESA, Deyab SSA, Carbohydr. Polym., 84, 454 (2011)
Nitayaphat W, Jintakosol T, J. Clean Prod., 87, 850 (2015)
Banerjee SS, Chen DH, J. Hazard. Mater., 147(3), 792 (2007)
Wu P, Zhang Q, Dai Y, Zhu N, Dang Z, Li P, Wu J, Wang X, Geoderma, 164, 215 (2011)
Nesic AR, Velickovic SJ, Antonovic DG, J. Hazard. Mater., 209, 256 (2012)
Stejskal J, Sapurina I, Trchova M, Prog. Polym. Sci, 35, 1420 (2010)
Janaki V, Oh BT, Shanthi K, Lee KJ, Ramasamy AK, Kannan SK, Synth. Met., 162, 974 (2012)
Ahmed SM, El-Dib FI, El-Gendy NS, Sayed WM, El-Khodary M, Arab. J. Chem., DOI:10.1016/j.arabjc.2012.04.049. (2012)
Das D, Varghese LR, Das N, Desalination, 360, 35 (2015)
Zhou LM, Wang YP, Liu ZR, Huang QW, J. Hazard. Mater., 161(2-3), 995 (2009)
Khalid ZE, Sayed GOE, Darweesh RS, Inter. J. Min. Proc., 120, 26 (2013)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
Freundlich HMF, J. Phys. Chem. B, 57, 385 (1906)
Dubinin MM, Chem. Rev., 60, 235 (1960)
Ho YS, Scientometrics, 59, 171 (2004)
Ho YS, Water Res., 40, 119 (2006)
Das D, Basak G, Lakshmi V, Das N, Biochem. Eng. J., 64, 30 (2012)
Khan SA, Rehman R, Khan MA, Waste Manage., 15, 271 (1995)
Vijayaraghavan K, Balasubramanian R, Chem. Eng. J., 163(3), 337 (2010)
Vinodhini V, Das N, Desalination, 264(1-2), 9 (2010)
Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M, Process Biochem., 41(3), 609 (2006)
Malkoc E, Nuhoglu Y, J. Hazard. Mater., 127(1-3), 120 (2005)
Malkoc E, J. Hazard. Mater., 137(2), 899 (2006)
Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy AK, Kannan SK, Carbohydr. Polym., 90, 1437 (2012)
Jeon C, Cha JH, J. Ind. Eng. Chem., 24, 107 (2014)
Charumathi D, Das N, Desalination, 285, 22 (2012)
Zambrano JB, Szygula A, Ruiz M, Sastre AM, Guibal E, J. Environ. Manage., 91, 2669 (2010)
Das D, Varshini CJS, Das N, Miner. Eng., 69, 40 (2014)
Runtti H, Tuomikoskia S, Kangas T, Lassi U, Kuokkanen T, Ramo J, J. Water Process. Eng., 4, 12 (2014)
Bhatnagar A, Minocha AK, Colloids Surf. B: Biointerfaces, 76, 544 (2010)