Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 11, 2015
Accepted February 9, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide
Xiaoliang Yuan1 2
Shijie Liu3
Guangrong Feng1 2
Yingying Liu4
Yongdan Li5
Houfang Lu1 2†
Bin Liang1 2
1College of Chemical Engineering, Sichuan University, Chengdu 610065, China, Korea 2Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China 3Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, U.S.A., USA 4Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China, Korea 5College of Chemical Engineering, Tianjin University, Tianjin 300072, China
luhouf@scu.edu.cn
Korean Journal of Chemical Engineering, July 2016, 33(7), 2134-2141(8), 10.1007/s11814-016-0044-3
Download PDF
Abstract
Mechanical activation is an effective method for destroying the crystalline structure. Biomass, especially its hemicellulose, can be degraded in the green solvent of liquid hot-water compressed carbon dioxide. To improve the degradation of crystalline cellulose in liquid hot-water compressed carbon dioxide, pretreatment of camphorwood sawdust by mechanical activation with a stirring ball mill was studied. Ball milling parameters and their effects on structure were determined by SEM, XRD and FT-IR. The influence of milling parameters on cellulose conversion can be ranked as follows: ball milling speed>activation time>the mass ratio of ball to biomass. The optimum milling condition was obtained at ball milling speed of 450 rpm and mass ratio of 30 : 1 of ball to biomass for 2 h. In this condition, cellulose crystallinity of sawdust decreased from 60.93% to 21.40%. The cellulose conversion was 37.8%, which was nearly four times of raw material (10.2%). The glucose yield in the hydrolysate was 1.49 g·L-1, which was nearly three times of that of raw material. It showed mechanical activation can destroy the crystalline structure of cellulose to promote degradation and the damage of lignocellulosic internal structure caused by ball milling is irreversible.
Keywords
References
Yue DJ, You FQ, Snyder SW, Comput. Chem. Eng., 66, 36 (2014)
Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E, Appl. Microbiol. Biotechnol., 87(4), 1303 (2010)
Phitsuwan P, Sakka K, Ratanakhanokchai K, Biomass Bioenerg., 58, 390 (2013)
Vancov T, McIntosh S, J. Chem. Technol. Biotechnol., 86(6), 818 (2011)
Canilha L, Santos VTO, Rocha GSM, J. Ind. Microbiol. Biotechnol., 38, 1467 (2011)
Kurakake M, Ide N, Komaki T, Curr. Microbiol., 54(6), 424 (2007)
Ares-Peon IA, Vila C, Garrote G, Parajo JC, J. Chem. Technol. Biotechnol., 86(2), 251 (2011)
Zhao P, Lu HF, Liang B, J. Biobased Mater. Bioenergy, 9, 334 (2015)
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101(13), 4851 (2010)
Zhu JY, Pan XJ, Zalesny RS, Appl. Microbiol. Biotechnol., 87(3), 847 (2010)
Linde M, Jakobsson EL, Galbe M, Zacchi G, Biomass Bioenerg., 32(4), 326 (2008)
Galbe M, Zacchi G, Adv. Biochem. Eng., 108, 41 (2007)
Kumar P, Barrett DM, Delwiche MJ, Stroeve P, Ind. Eng. Chem. Res., 48(8), 3713 (2009)
Chang VS, Nagwani M, Kim CH, Holtzapple MT, Appl. Biochem. Biotechnol., 94(1), 1 (2001)
Karimi K, Kheradmandinia S, Taherzadeh MJ, Biomass Bioenerg., 30(3), 247 (2006)
Corrales RCNR, Mendes FMT, Perrone CC, Biotechnol. Biofuels, 5, 36 (2012)
Tromans D, Meech JA, Miner. Eng., 14(11), 1359 (2001)
Hendriks ATWM, Zeeman G, Bioresour. Technol., 10, 10 (2009)
da Silva AS, Inoue H, Endo T, Yano S, Bon EPS, Bioresour. Technol., 101(19), 7402 (2010)
Ago M, Endo T, Hirotsu T, Cellulose, 11, 163 (2004)
Liao ZD, Huang ZQ, Hu HY, Zhang YJ, Tan YF, Bioresour. Technol., 102(17), 7953 (2011)
Hu HY, Zhang YJ, Liu XP, Huang ZQ, Chen YM, Yang M, Qin XZ, Feng ZF, Polym. Bull., 71(2), 453 (2014)
Dawy M, Shabaka AA, Nada AMA, Polym. Degrad. Stabil., 62, 455 (1998)
de Andrade JK, Komatsu E, Perreault H, Torres YR, da Rosa MR, Felsner ML, Food Chem., 190, 481 (2016)
Wood IP, Elliston A, Ryden P, Bancroft I, Roberts IN, Waldron KW, Biomass Bioenerg., 44, 117 (2012)
Kim S, Holtzapple MT, Bioresour. Technol., 97(4), 583 (2006)
Lu HG, Introduction to Power Technology, TongJi University Press, Shang Hai (1998).
Yang R, Chen X, Yu J, Chem. Ind. Forest Prod., 1, 83 (2015)
Huang ZQ, Liang X, Hu HY, Polym. Degrad. Stabil., 94, 1737 (2009)
Yang J, Zhang T, Acta. Metall. Sin., 33, 381 (1997)
Colom X, Carrillo F, Nogues F, Polym. Degrad. Stabil., 80, 543 (2003)
Schwanninger M, Rodrigues JC, Pereira H, Vib. Spectrosc., 36, 23 (2004)
Zhang W, Liang M, Lu C, Cellulose, 14, 447 (2007)
Chen J, Chemical of papermaking and plant resources, Science Press, Bei Jing (2012).
Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E, Appl. Microbiol. Biotechnol., 87(4), 1303 (2010)
Phitsuwan P, Sakka K, Ratanakhanokchai K, Biomass Bioenerg., 58, 390 (2013)
Vancov T, McIntosh S, J. Chem. Technol. Biotechnol., 86(6), 818 (2011)
Canilha L, Santos VTO, Rocha GSM, J. Ind. Microbiol. Biotechnol., 38, 1467 (2011)
Kurakake M, Ide N, Komaki T, Curr. Microbiol., 54(6), 424 (2007)
Ares-Peon IA, Vila C, Garrote G, Parajo JC, J. Chem. Technol. Biotechnol., 86(2), 251 (2011)
Zhao P, Lu HF, Liang B, J. Biobased Mater. Bioenergy, 9, 334 (2015)
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101(13), 4851 (2010)
Zhu JY, Pan XJ, Zalesny RS, Appl. Microbiol. Biotechnol., 87(3), 847 (2010)
Linde M, Jakobsson EL, Galbe M, Zacchi G, Biomass Bioenerg., 32(4), 326 (2008)
Galbe M, Zacchi G, Adv. Biochem. Eng., 108, 41 (2007)
Kumar P, Barrett DM, Delwiche MJ, Stroeve P, Ind. Eng. Chem. Res., 48(8), 3713 (2009)
Chang VS, Nagwani M, Kim CH, Holtzapple MT, Appl. Biochem. Biotechnol., 94(1), 1 (2001)
Karimi K, Kheradmandinia S, Taherzadeh MJ, Biomass Bioenerg., 30(3), 247 (2006)
Corrales RCNR, Mendes FMT, Perrone CC, Biotechnol. Biofuels, 5, 36 (2012)
Tromans D, Meech JA, Miner. Eng., 14(11), 1359 (2001)
Hendriks ATWM, Zeeman G, Bioresour. Technol., 10, 10 (2009)
da Silva AS, Inoue H, Endo T, Yano S, Bon EPS, Bioresour. Technol., 101(19), 7402 (2010)
Ago M, Endo T, Hirotsu T, Cellulose, 11, 163 (2004)
Liao ZD, Huang ZQ, Hu HY, Zhang YJ, Tan YF, Bioresour. Technol., 102(17), 7953 (2011)
Hu HY, Zhang YJ, Liu XP, Huang ZQ, Chen YM, Yang M, Qin XZ, Feng ZF, Polym. Bull., 71(2), 453 (2014)
Dawy M, Shabaka AA, Nada AMA, Polym. Degrad. Stabil., 62, 455 (1998)
de Andrade JK, Komatsu E, Perreault H, Torres YR, da Rosa MR, Felsner ML, Food Chem., 190, 481 (2016)
Wood IP, Elliston A, Ryden P, Bancroft I, Roberts IN, Waldron KW, Biomass Bioenerg., 44, 117 (2012)
Kim S, Holtzapple MT, Bioresour. Technol., 97(4), 583 (2006)
Lu HG, Introduction to Power Technology, TongJi University Press, Shang Hai (1998).
Yang R, Chen X, Yu J, Chem. Ind. Forest Prod., 1, 83 (2015)
Huang ZQ, Liang X, Hu HY, Polym. Degrad. Stabil., 94, 1737 (2009)
Yang J, Zhang T, Acta. Metall. Sin., 33, 381 (1997)
Colom X, Carrillo F, Nogues F, Polym. Degrad. Stabil., 80, 543 (2003)
Schwanninger M, Rodrigues JC, Pereira H, Vib. Spectrosc., 36, 23 (2004)
Zhang W, Liang M, Lu C, Cellulose, 14, 447 (2007)
Chen J, Chemical of papermaking and plant resources, Science Press, Bei Jing (2012).