Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 5, 2015
Accepted February 18, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Volumetric properties of binary mixtures of 1-butyl-3-methylimidazolium halides with water, methanol or ethanol at 293.15 to 318.15 K
Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk 27469, Korea
b.h.park@ut.ac.kr
Korean Journal of Chemical Engineering, July 2016, 33(7), 2191-2204(14), 10.1007/s11814-016-0053-2
Download PDF
Abstract
Densities of nine binary solutions made of one of three 1-butyl-3-methylimidazolium ([bmim]) halides with water, methanol, or ethanol were measured at atmospheric pressure. The compositions of an ionic liquid ([bmim]Cl, [bmim]Br, or [bmim]I) were increased up to 0.4 as a mole fraction at a given temperature within a range of 293.15 to 318.15 K. The measured values were correlated by a quadratic equation to obtain a temperature dependency of the respective systems. Furthermore, the equation was used to obtain the volume expansivity, which would be used for a pressure-volume-temperature behavior of a condensed phase. The apparent molar volumes were also calculated from the experimental data. The remarkable distinction of the volumetric property behavior between aqueous and nonaqueous solutions was found and attributed to strong ion.solvent interactions in the aqueous systems.
References
Kirchner B, Ed., Ionic Liquids, Springer, New York (2010).
Anthony JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 105(44), 10942 (2001)
Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667 (2002)
Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX, J. Ind. Eng. Chem., 19(1), 106 (2013)
Betz D, Altmann P, Cokoja M, Herrmann WA, Kuhn FE, Coord. Chem. Rev., 255, 1518 (2011)
Tian D, Han Y, Lu C, Zhang X, Yuan G, Carbohydr. Polym., 113, 83 (2014)
Chen WJ, Lou WT, Yu CY, Wu H, Zong MH, Smith TJ, J. Biotechnol., 162, 183 (2012)
Kim KS, Park SY, Choi S, Lee H, J. Power Sources, 155(2), 385 (2006)
Shin BS, Kim ES, Kwak SK, Lim JS, Kim KS, Kang JW, Fluid Phase Equilib., 382, 270 (2014)
Jayakumar M, Venkatesan KA, Srinivasan TG, Electrochim. Acta, 53(6), 2794 (2008)
Baj S, Krawczyk T, Dabrowska A, Siewniak A, Sobolewski A, Korean J. Chem. Eng., 32(11), 2295 (2015)
Kim KS, Shin BK, Lee H, Ziegler F, Fluid Phase Equilib., 218(2), 215 (2004)
Fan GZ, Liao CJ, Fang T, Wang M, Song GS, Fuel Process. Technol., 116, 142 (2013)
He XK, Hou BL, Li C, Zhu QY, Jiang YM, Wu LY, Electrochim. Acta, 130, 245 (2014)
Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M, Inorg. Chem., 35(5), 1168 (1996)
Domanska U, Marciniak A, J. Chem. Eng. Data, 48(3), 451 (2003)
Domanska U, Bogel-Lukasik E, Bogel-Lukasik R, J. Phys. Chem. B, 107(8), 1858 (2003)
Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, Holbrey JD, Rogers RD, Green Chem., 4, 81 (2002)
Letcher TM, Deenadayalu N, Soko B, Ramjugernath D, Naicker PK, J. Chem. Eng. Data, 48(4), 904 (2003)
Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD, Green Chem., 3, 156 (2001)
Yang QW, Zhang H, Su BG, Yang YW, Ren QL, Xing HB, J. Chem. Eng. Data, 55(4), 1750 (2010)
Lal B, Sahin M, Ayranci E, J. Chem. Thermodyn., 54, 142 (2012)
Matkowska D, Hofman T, J. Mol. Liq., 177, 301 (2013)
Sadeghi R, Shekaari H, Hosseini R, J. Chem. Thermodyn., 41(2), 273 (2009)
Sastry NV, Vaghela NM, Macwan PM, J. Mol. Liq., 180, 12 (2013)
Zafarani-Moattar MT, Shekaari H, J. Chem. Thermodyn., 37(10), 1029 (2005)
Wen W, Saito S, J. Phys. Chem., 68, 2639 (1964)
Anthony JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 105(44), 10942 (2001)
Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667 (2002)
Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX, J. Ind. Eng. Chem., 19(1), 106 (2013)
Betz D, Altmann P, Cokoja M, Herrmann WA, Kuhn FE, Coord. Chem. Rev., 255, 1518 (2011)
Tian D, Han Y, Lu C, Zhang X, Yuan G, Carbohydr. Polym., 113, 83 (2014)
Chen WJ, Lou WT, Yu CY, Wu H, Zong MH, Smith TJ, J. Biotechnol., 162, 183 (2012)
Kim KS, Park SY, Choi S, Lee H, J. Power Sources, 155(2), 385 (2006)
Shin BS, Kim ES, Kwak SK, Lim JS, Kim KS, Kang JW, Fluid Phase Equilib., 382, 270 (2014)
Jayakumar M, Venkatesan KA, Srinivasan TG, Electrochim. Acta, 53(6), 2794 (2008)
Baj S, Krawczyk T, Dabrowska A, Siewniak A, Sobolewski A, Korean J. Chem. Eng., 32(11), 2295 (2015)
Kim KS, Shin BK, Lee H, Ziegler F, Fluid Phase Equilib., 218(2), 215 (2004)
Fan GZ, Liao CJ, Fang T, Wang M, Song GS, Fuel Process. Technol., 116, 142 (2013)
He XK, Hou BL, Li C, Zhu QY, Jiang YM, Wu LY, Electrochim. Acta, 130, 245 (2014)
Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M, Inorg. Chem., 35(5), 1168 (1996)
Domanska U, Marciniak A, J. Chem. Eng. Data, 48(3), 451 (2003)
Domanska U, Bogel-Lukasik E, Bogel-Lukasik R, J. Phys. Chem. B, 107(8), 1858 (2003)
Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, Holbrey JD, Rogers RD, Green Chem., 4, 81 (2002)
Letcher TM, Deenadayalu N, Soko B, Ramjugernath D, Naicker PK, J. Chem. Eng. Data, 48(4), 904 (2003)
Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD, Green Chem., 3, 156 (2001)
Yang QW, Zhang H, Su BG, Yang YW, Ren QL, Xing HB, J. Chem. Eng. Data, 55(4), 1750 (2010)
Lal B, Sahin M, Ayranci E, J. Chem. Thermodyn., 54, 142 (2012)
Matkowska D, Hofman T, J. Mol. Liq., 177, 301 (2013)
Sadeghi R, Shekaari H, Hosseini R, J. Chem. Thermodyn., 41(2), 273 (2009)
Sastry NV, Vaghela NM, Macwan PM, J. Mol. Liq., 180, 12 (2013)
Zafarani-Moattar MT, Shekaari H, J. Chem. Thermodyn., 37(10), 1029 (2005)
Wen W, Saito S, J. Phys. Chem., 68, 2639 (1964)