ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 28, 2016
Accepted May 2, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modeling and simulation of Bacillus cereus chitosanase activity during purification using expanded bed chromatography

Biochemical Engineering Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
everaldo@eq.ufrn.br
Korean Journal of Chemical Engineering, September 2016, 33(9), 2650-2658(9), 10.1007/s11814-016-0127-1
downloadDownload PDF

Abstract

A phenomenological model was used to describe sequentially the three steps (flowthrough, washing and elution) of expanded bed adsorption chromatography for recovery of chitosanases from Bacillus cereus. Additionally, a hybrid strategy for model parameter estimation was carried out using particle swarm optimization and Gauss-Newton algorithms. The model was validated with independent experimental data and the statistical criteria (χ2 and mean squared error tests) showed that the hybrid strategy was more promising than just the heuristic method. With the calibrated model, surface response methodology was applied to obtain the optimal operational conditions, and experiments were performed to confirm these results. Overall, a value of 41.08% for yield was obtained using 700mM NaCl during elution. In summary, all approach employed in this work was relevant for maximizing the yield of the chromatographic process.

References

Thadathil N, Velappan SP, Food Chem., 150, 392 (2014)
Wang SL, Tseng WN, Liang TW, Biodegradation, 22, 939 (2011)
de Araujo NK, de Assis CF, dos Santos ES, de Macedo GR, de Farias LF, Arimateia H, Pedrosa MDF, Pagnoncelli MGB, Appl. Biochem. Biotechnol., 170(2), 292 (2013)
Hsu SK, Chung YC, Chang CT, Sung HY, J. Agric. Food Chem., 60, 649 (2012)
Assis CF, Costa LS, Melo-Silveira RF, Oliveira RM, Pagnoncelli MG, Rocha HA, Macedo GR, Santos ES, World J. Microb. Biotechnol., 28, 1097 (2012)
Masuda S, Azuma K, Kurozumi S, Kiyose M, Osaki T, Tsuka T, Itoh N, Imagawa T, Minami S, Sato K, Okamoto Y, Carbohydr. Polym., 111, 783 (2014)
Wu SJ, Pan SK, Wang HB, Wu JH, Int. J. Biol. Macromol., 62, 348 (2013)
Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M, Int. J. Food Microb., 185, 57 (2014)
Santos ES, Guirardello R, Franco TT, J. Chromatogr. A, 944, 217 (2002)
D’Souza RN, Azevedo AM, Aires-Barros MR, Krajnc NL, Kramberger P, Carbajal ML, Graselli M, Meyer R, Fernandez-Lahore M, Pharm. Bioprocess., 1, 423 (2013)
Fee CJ, Chem. Eng. Process., 40(4), 329 (2001)
Ramos A, Acien FG, Fernandez-Sevilla JM, Gonzalez CV, Bermejo R, J. Chromatogr. B, 879, 511 (2011)
Boeris V, Balce I, Vennapusa RR, Rodriguez MA, Pico G, Fernandez-Lahore M, J. Chromatogr. B, 900, 32 (2012)
Junior FCS, Vaz MRF, Padilha CEA, Chiberio AS, Martins DRA, Macedo GR, Santos ES, J. Chromatogr. B, 986, 1 (2015)
Wright PR, Glasser BJ, AIChE J., 47(2), 474 (2001)
Tong XD, Xue B, Sun Y, Biochemic. Eng. J., 16, 265 (2003)
Li P, Xiu GH, Rodrigues AE, AIChE J., 51(11), 2965 (2005)
Yun J, Lin DQ, Yao SJ, J. Chromatogr. A, 1095, 16 (2005)
Padilha CEA, Souza DFS, Oliveira JA, Macedo GR, Santos ES, Current Chromatogr., 3, 44 (2016)
Chen WD, Dong XY, Sun Y, J. Chromatogr. A, 1012, 1 (2003)
Li W, Zhang S, Sun Y, Biochem. Eng. J., 22, 63 (2004)
Osberghaus A, Hepbildikler S, Nath S, Haindl M, von Lieres E, Hubbuch J, J. Chromatogr. A, 1237, 86 (2012)
Dismer F, Hansen S, Oelmeier SA, Hubbuch J, Biotechnol. Bioeng., 110(3), 683 (2013)
Osberghaus A, Hepbildikler S, Nath S, Haindl M, von Lieres E, Hubbuch J, J. Chromatogr. A, 1233, 54 (2012)
Antia FD, Horvath C, J. Chromatogr. A, 484, 1 (1989)
Chen J, Sun Y, J. Chromatogr. A, 992, 29 (2003)
Araujo NK, Pagnoncelli MGB, Pimentel VC, Xavier MLO, Padilha CEA, Macedo GR, Santos ES, Int. J. Biol. Macromol., 82, 291 (2016)
Assis CC, Araujo NK, Pagnoncelli MGB, Pedrini MRS, Macedo GR, Santos ES, Bioprocess. Biosyst. Eng., 33, 893 (2010)
Santana SCD, Filho RCDS, Cavalcanti JDS, Oliveira JAD, Macedo GRD, Padilha FF, Santos ESD, Korean J. Chem. Eng., 31(4), 684 (2014)
Santana SC, Filho RCS, Cavalcanti JS, Oliveira JA, Macedo GR, Padilha FF, Santos ES, Biocatal. Agric. Biotechnol., 4, 727 (2015)
Noronha FB, Pinto JC, Monteiro JL, Lobao MW, Santos TJ, Estima - Pacote Computacional para Estimacao de Parametros e Projeto de Experimentos, PEQ Internal Report (1993).
Li P, Xiu GH, Rodrigues AE, AIChE J., 51(11), 2965 (2005)
Moraes CC, Mazutti MA, Rodrigues MI, Filho FM, Kalil SJ, J. Chromatogr. A, 1216, 4395 (2009)
Burkert CAV, Barbosa GNO, Mazutti MA, Maugeri F, Process Biochem., 46(6), 1270 (2011)
Moraes CC, Mazutti MA, Filho FM, Kalil SJ, J. Chromatogr. A, 1281, 73 (2013)
de Sousa FC, Padilha CED, Chiberio AS, Ribeiro VT, Martins DRA, de Oliveira JA, de Macedo GR, dos Santos ES, Sep. Purif. Technol., 164, 34 (2016)
Davis ME, Numerical Methods and Modeling for Chemical Engineers, Wiley, New York (1984).
Petzold LR, DASSL code, version 1989, Computing and Mathematics Research Division, Lawrence Livermore National Laboratory, L316, PO Box 808, Livermore, CA 94559 (1989).
Giordano PC, Beccaria AJ, Goicoechea HC, Olivieri AC, Biochem. Eng. J., 80, 1 (2013)
Brun R, Reichert P, Kunsch HR, Water Resour. Res., 37, 1015 (2001)
Prunescu RM, Sin G, Bioresour. Technol., 150, 393 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로