ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 25, 2016
Accepted June 6, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of oxygen flow rate on the electrical and optical characteristics of dopantless tin oxide films fabricated by low pressure chemical vapor deposition

Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea 1Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea 2Smart Electronics, 87 Samdong-ro, Samdong-myeon, Ulju-goon, Ulsan 44956, Korea
changkoo@ajou.ac.kr
Korean Journal of Chemical Engineering, September 2016, 33(9), 2711-2715(5), 10.1007/s11814-016-0151-1
downloadDownload PDF

Abstract

The effect of oxygen flow rate on the electrical and optical characteristics of dopantless tin oxide films prepared by low pressure chemical vapor deposition (LPCVD) was investigated. A decrease in the sheet resistance of the film with increasing oxygen flow rate in the range of 200-300 sccm was attributed to an increase in the film thickness (and correspondingly, in the grain size); while at oxygen flow rates higher than 300 sccm, the increase in the sheet resistance of the film resulted from an increase in the X-ray diffraction peak intensities of the (110), (101), and (201) planes. The optical bandgap of the film decreased when the oxygen flow rate was increased from 200 to 300 sccm, but it remained nearly constant for oxygen flow rates higher than 300 sccm. A maximum figure-of-merit was achieved for films prepared with an oxygen flow rate of 300 sccm.

References

Yusta FJ, Hitchman ML, Shamlian SH, J. Mater. Chem., 7, 1421 (1997)
Korotkov RY, Ricou P, Farran AJE, Thin Solid Films, 502(1-2), 79 (2006)
Maleki M, Rozati SM, Phys. Scr., 86, 015801 (2012)
Bansal S, Pandya DK, Kashyap SC, Haranath D, J. Alloy. Compd., 583, 186 (2014)
Wang Y, Ramos I, Santiago-Aviles JJ, J. Appl. Phys., 102, 093517 (2007)
Kim JY, Kim ER, Han YK, Nam KH, Ihm DW, Jpn. J. Appl. Phys., 41, 237 (2001)
Sheel DW, Yates HM, Evans P, Dagkaldiran U, Gordijn A, Finger F, Remes Z, Vanecek M, Thin Solid Films, 517(10), 3061 (2009)
Klein A, Korber C, Wachau A, Sauberlich F, Gassenbauer Y, Harvey SP, Proffit DE, Mason TO, Materials, 3, 4892 (2010)
Kang YG, Kim HJ, Park HG, Kim BY, Seo DS, J. Mater. Chem., 22, 15969 (2012)
Fine GF, Cavanagh LM, Afonja A, Binions R, Sensors, 10, 5469 (2010)
Korotcenkov G, Brinzari V, Schwank J, DiBattista M, Vasiliev A, Sens. Actuators B-Chem., 77, 244 (2001)
Yadav AA, Masumdar EU, Moholkar AV, Neumann-Spallart M, Rajpure KY, Bhosale CH, J. Alloy. Compd., 488, 350 (2009)
Cho YS, Moon JW, Lim DC, Kim YD, Korean J. Chem. Eng., 30(5), 1142 (2013)
Kim IH, Ko JH, Kim D, Lee KS, Lee TS, Jeong JH, Cheong B, Baik YJ, Kim WM, Thin Solid Films, 515(4), 2475 (2006)
Senthilkumar V, Vickraman P, P. J. Mater. Sci.-Mater. Electron., 21, 578 (2010)
Pan XQ, Fu L, Dominguez JE, J. Appl. Phys., 89, 6056 (2001)
Nath RK, Nath SS, Sensor Mater., 21, 95 (2009)
Bagheri-Mohagheghi MM, Shokooh-Saremi M, Semicond. Sci. Technol., 19, 764 (2004)
Kim JH, Cho SW, Kang DK, Lee KM, Baek CY, Lee HM, Kim CK, Sci. Adv. Mater., 8, 117 (2016)
Wan CF, McGrath RD, Keenan WF, Frank SN, J. Electrochem. Soc., 136, 1459 (1989)
Belanger D, Dodelet JP, Lombos BA, Dickson JI, J. Electrochem. Soc., 132, 1398 (1985)
Chopra KL, Major S, Pandya DK, Thin Solid Films, 102, 1 (1985)
Haacke G, J. Appl. Phys., 47, 4086 (1976)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로