ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 17, 2016
Accepted March 31, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of metal organic framework (MOF-5) with high selectivity for CO2/N2 separation in flue gas by maximum water concentration approach

1Chengdu Institute of Organic Chemistry (Chengdu Organic Chemicals Co., Ltd.), Chinese Academy of Science, Chengdu, 610041, P. R. China 2University of Chinese Academy of Science, Beijing, 100049, P. R. China 3Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, P. R. China
Korean Journal of Chemical Engineering, September 2016, 33(9), 2747-2755(9), 10.1007/s11814-016-0092-8
downloadDownload PDF

Abstract

Water plays a crucial role in the synthesis mechanism of metal organic framework-5 (MOF-5). Synthesized MOF-5 with good phase structure and large specific surface area is largely determined by an important synthesis factor: the total water concentration of the initial synthesis solution (Ctw). An understanding of the effects of different and high Ctw on the synthesis of MOF-5 and the investigation of the maximum Ctw suitable for the synthesis of MOF-5 are important to guide the synthesis of MOF-5. Through the research of the maximum Ctw, a favorable synthetic approach was established which could realize the synthesis of MOF-5 with fine performance on CO2 adsorption and separation. The research results show that the maximum Ctw could be as high as 1,440mmol/L, and synthesized MOF-5 still has a good phase structure and a large specific surface area of 2,136m2/g (BET). Synthesized MOF-5 by the maximum Ctw exhibits a high CO2 adsorption capacity of 2.5mmol/g and a low N2 adsorption capacity of 0.2mmol/g at 298 K and 100 kPa. More importantly, synthesized MOF-5 by the maximum Ctw exhibits a high selectivity for CO2/N2 of 18-22 at 298 K and 20-130 kPa in simulated flue gas.

References

Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM, Science, 329(5990), 424 (2010)
Deng HX, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM, Science, 327(5967), 846 (2010)
Zhou X, Zhang Y, Yang XG, Zhao LZ, Wang GY, J. Mol. Catal. A-Chem., 361, 12 (2012)
Munn AS, Clarkson GJ, Millange F, Dumont Y, Walton RI, Cryst. Eng. Commun., 15, 9679 (2013)
Kent CA, Liu DM, Ito A, Zhang T, Brennaman MK, Meyer TJ, Lin WB, J. Mater. Chem. A, 1, 14982 (2013)
Yoon HC, Rallapalli PBS, Han SS, Beum HT, Jung TS, Cho DW, Ko M, Kim JN, Korean J. Chem. Eng., 12, 2501 (2015)
Kaye SS, Dailly A, Yaghi OM, Long JR, J. Am. Chem. Soc., 129(46), 14176 (2007)
Millward AR, Yaghi OM, J. Am. Chem. Soc., 127(51), 17998 (2005)
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM, Science, 295, 469 (2002)
Drummond ML, Cundari TR, Wilson AK, J. Phys. Chem. C, 117, 14717 (2013)
Kong XQ, Deng HX, Yan FY, Kim J, Swisher JA, Smit B, Yaghi OM, Reimer JA, Science, 341(6148), 882 (2013)
Tsao CS, Yu MS, Chung TY, Wu HC, Wang CY, Chang KS, Chen HL, J. Am. Chem. Soc., 127, 15997 (2009)
Hafizovic J, Bjorgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP, J. Am. Chem. Soc., 129(12), 3612 (2007)
Hausdorf S, Wagler J, Mossig R, Mertens FORL, J. Phys. Chem. A, 112, 7567 (2008)
Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM, Science, 309, 1350 (2005)
Gadipelli S, Guo Z, Chem. Mater., 26, 6333 (2014)
Zhao ZX, Li Z, Lin YS, Ind. Eng. Chem. Res., 48(22), 10015 (2009)
Zhao ZX, Ma XL, Kasik A, Li Z, Lin YS, Ind. Eng. Chem. Res., 52(3), 1102 (2013)
Yaghi OM, Eddaoudi M, Li H, Kim J, Rosi N, United States Patent, No., 2003/0004364 A1 (2003).
Hausdorf S, Baitalow F, Seidel J, Mertens FORL, J. Phys. Chem. A, 111(20), 4259 (2007)
Yaghi OM, Li QW, MRS Bull., 34, 682 (2009)
Walton KS, Millward AR, Dubbeldam D, Frost H, Low JJ, Yaghi OM, Snurr RQ, J. Am. Chem. Soc., 130(2), 406 (2008)
Saha D, Bao Z, Jia F, Deng S, Environ. Sci. Technol., 44, 1820 (2010)
Karra JR, Walton KS, J. Phys. Chem. C, 114, 15735 (2010)
Liu B, Smit B, Langmuir, 25(10), 5918 (2009)
Keskin S, Sholl DS, Ind. Eng. Chem. Res., 48(2), 914 (2009)
Zhang L, Hu YH, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 176, 573 (2011)
Li HH, Shi W, Zhao KN, Li H, Bing YM, Cheng P, Inorg. Chem., 51(17), 9200 (2012)
Rosi NL, Kim J, Eddaoudi M, Chen BL, O'Keeffe M, Yaghi OM, J. Am. Chem. Soc., 127(5), 1504 (2005)
Wong-Foy AG, Matzger AJ, Yaghi OM, J. Am. Chem. Soc., 128(11), 3494 (2006)
Baran P, Zarebska K, Bukowska M, Energy Fuels, 29(3), 1899 (2015)
Sudibandriyo M, Pan ZJ, Fitzgerald JE, Robinson RL, Gasem EAM, Langmuir, 19(13), 5323 (2003)
Mohammad SA, Chen JS, Fitzgerald JE, Robinson RL, Gasem KAM, Energy Fuels, 23(1), 1107 (2009)
Mohammad SA, Arumugam A, Robinson RL, Gasem KAM, Energy Fuels, 26(1), 536 (2012)
Wu Q, Zhou L, Wu JQ, Zhou YP, J. Chem. Eng. Data, 50(2), 635 (2005)
Remy T, Peter SA, Perre SV, Valvekens P, Vos DED, Baron GV, Denayer JFM, J. Phys. Chem. C, 117, 9301 (2013)
Ming Y, Purewal J, Yang J, Xu CC, Soltis R, Warner J, Veenstra M, Gaab M, Muller U, Siegel DJ, Langmuir, 31(17), 4988 (2015)
Li H, Eddaoudi M, O’Keeffe M, Yaghi OM, Nature, 402, 276 (1999)
Eddaoudi M, Li HL, Yaghi OM, J. Am. Chem. Soc., 122(7), 1391 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로