ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 9, 2016
Accepted August 1, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis

College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
lhgan401@126.com
Korean Journal of Chemical Engineering, January 2017, 34(1), 110-117(8), 10.1007/s11814-016-0220-5
downloadDownload PDF

Abstract

Three kinds of solid acid catalysts were prepared from alkali lignin in the waste liquor of pulping using carbonation-sulfonation method with different pretreatment. The lignin-derived solid acids (LDSAs) were characterized by FESEM, XRD, FTIR, TGA, BET and acid-base titration, respectively. A comparison study on the catalytic performance of LDSA prepared by different pretreatment method before carbonation in the hydrolysis of microcrystalline cellulose (MCC) was carried out. Results showed that the LDSA prepared by chemical activation with phosphoric acid (LPC-SO3H) exhibited superior catalytic activity due to its higher densities of -COOH group (1.68mmol/g) as binding site and -SO3H group (0.88mmol/g) as catalytic site as well as its larger specific surface area (488.4m2/g) than those of the other two LDSAs. A total reducing sugar yield of 50.8% in MCC hydrolysis was obtained under the reaction conditions of temperature of 180 ℃, time of 3 h, MCC concentration of 6mg/mL and mass ratio of catalyst to MCC of 3.3 (w/w). Additionally, the value activation energy for hydrolysis of MCC to reducing sugars using LPC-SO3H was 83.31 kJ/mol, which was smaller than that using sulfuric acid.

References

Wang J, Xi J, Wang Y, Green Chem., 17, 737 (2015)
Hu L, Lin L, Wu Z, Zhou SY, Liu SJ, Appl. Catal. B: Environ., 174, 225 (2015)
Hu L, Tang X, Wu Z, Lin L, Xu JX, Xu N, Dai BL, Chem. Eng. J., 263, 299 (2015)
Wu M, Wang Y, Wang D, Tan M, Li P, Wu W, Tsubaki N, J. Porous Mat., 23, 263 (2015)
Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M, ACS Appl. Mater Interfaces, 7, 26737 (2015)
Zhou L, Liu Z, Bai Y, Lu T, Yang X, Xu J, J. Energy Chem., 25, 141 (2016)
Zhou Y, Huang R, Ding F, Brittain AD, Liu J, Zhang M, Xiao M, Meng Y, Sun L, ACS Appl. Mater Interfaces, 6, 7417 (2014)
Cheng MX, Shi T, Guan HY, Wang ST, Wang XH, Jiang ZJ, Appl. Catal. B: Environ., 107(1-2), 104 (2011)
Hegner J, Pereira KC, DeBoef B, Lucht BL, Tetrahedron Lett., 51, 2356 (2010)
Rinaldi R, Palkovits R, Schuth F, Angew. Chem.-Int. Edit., 47, 8047 (2008)
Fu ZW, Wan H, Cui Q, Xie JH, Tang YJ, Guan GF, React. Kinet. Catal. Lett., 104, 313 (2011)
Fu ZW, Wan H, Hu XS, Cui Q, Guan GF, React. Kinet. Catal. Lett., 107, 203 (2012)
Shen SG, Wang CY, Cai B, Li HM, Han Y, Wang T, Qin HF, Fuel, 113, 644 (2013)
Shen SG, Cai B, Wang CY, Li HM, Dai G, Qin HF, Appl. Catal. A: Gen., 473, 70 (2014)
Guo F, Xiu ZL, Liang ZX, Appl. Energy, 98, 47 (2012)
Wu YY, Fu ZH, Yin DL, Xu Q, Liu FL, Lu CL, Mao LQ, Green Chem., 12, 696 (2010)
Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M, J. Am. Chem. Soc., 130(38), 12787 (2008)
Zhong CG, Cao Q, Guo LC, Deng SB, React. Kinet. Catal. Lett., 112, 361 (2014)
Guo HX, Qi XH, Li LY, Smith RL, Bioresour. Technol., 116, 355 (2012)
Guo HX, Lian YF, Yan LI, Qi HX, Smith RL, Green Chem., 15, 2167 (2013)
Qi XH, Guo HX, Li LY, Smith RL, Chemsuschem, 5, 2215 (2012)
Ayyachamy MM, Cliffe FE, Coyne JM, Collier J, Tuohy MG, Biomass. Conv. Bioref., 3, 255 (2013)
Pua FL, Fang Z, Zakaria S, Guo F, Chia CH, Biotechnol. Biofuels, 4, 56 (2011)
Hu S, Hsieh YL, J. Mater. Chem. A, 1, 11279 (2013)
Gan LH, Zhou MS, Qiu XQ, Holzforschung, 69, 25 (2015)
Gan LH, Zhou MS, Yang DJ, Qiu XQ, J. Dispersion Sci. Technol., 34, 644 (2012)
Hu L, Wu Z, Xu JX, Zhou SY, Tang GD, Korean J. Chem. Eng., 1, 1 (2016)
Hu SZ, Jiang F, Hsieh YL, ACS Sustainable Chem. Eng., 3, 2566 (2015)
Zhang XC, Zhang Z, Wang F, Wang YH, Song Q, Xu J, J. Mol. Catal. A-Chem., 377, 102 (2013)
Lin GF, Jiang JC, Wu KJ, Sun K, Bioenergy Res., 6, 1237 (2013)
Zuo SL, Yang JX, Liu JL, Cai X, Fuel Process. Technol., 90(7-8), 994 (2009)
Wikberg H, Ohra-aho T, Pileidis F, Titirici MM, ACS Sustainable Chem. Eng., 3, 2737 (2015)
Shen SG, Wang CY, Cai B, Li HM, Han Y, Wang T, Qin HF, Fuel, 113, 644 (2013)
Shuai L, Pan XJ, Energy Environ. Sci., 5, 6889 (2012)
Hu SL, Smith TJ, Lou WY, Zong MH, J. Agric. Food Chem., 62, 1905 (2014)
Xiong Y, Zhang ZH, Wang X, Liu B, Lin JT, Chem. Eng. J., 235, 349 (2014)
Sun Z, Tao ML, Zhao Q, Guang HY, Shi T, Wang XH, Cellulose, 22, 675 (2015)
Onda A, Ochi T, Yanagisawa K, Green Chem., 10, 1033 (2008)
Lai DM, Deng L, Guo QX, Fu Y, Energy Environ. Sci., 4, 3552 (2011)
Lai DM, Deng L, Li J, Liao B, Guo QX, Fu Y, ChemSusChem, 4, 55 (2011)
Wang JJ, Ren JW, Liu XH, Lu GZ, Wang YQ, AIChE J., 59(7), 2558 (2013)
Yang ZZ, Huang RL, Qi W, Tong LP, Su RX, He ZM, Chem. Eng. J., 280, 90 (2015)
Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A, Green Chem., 13, 326 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로