ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 14, 2016
Accepted July 30, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Kinetics of growth on dual substrates, production of novel glutaminase-free L-asparaginase and substrates utilization by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor

1Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India 2Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad 211004 U.P., India 3, India
veeranki@iitg.ernet.in
Korean Journal of Chemical Engineering, January 2017, 34(1), 118-126(9), 10.1007/s11814-016-0216-1
downloadDownload PDF

Abstract

Bacterial L-asparaginase has been widely used as a potential therapeutic agent in the treatment of various lymphoblastic leukemia diseases. We studied product and dual substrates utilization kinetics by P. carotovorum MTCC 1428 in batch bioreactor. The kinetic study revealed that the maximum growth of P. carotovorum MTCC 1428 was achieved at 2 g l-1 and 5 g l-1 of glucose and L-asparagine, respectively. Different substrate inhibition models were fitted to the growth kinetic data and the additive form of double Luong model was found to best explain the growth kinetics of P. carotovorum MTCC 1428. The kinetic parameters of growth studies showed that the predicted maximum inhibition concentration of glucose (Smg) and L-asparagine (Sma) was close to the experimentally observed value 15.0 and 10 gl-1, respectively. Modified form of the Luedeking-Piret model was used to describe the kinetics of L-asparaginase production, and the system seems to be mixed growth associated. Kinetic models of dual substrate growth, L-asparaginase production and substrate(s) utilization by P. carotovorum MTCC 1428 well fitted with experimental data with regression coefficients (R2) value of 0.97, 0.96 and 0.93, respectively.

References

Athale UH, Chan AKC, Thromb. Res., 111, 199 (2003)
Kotzia GA, Labrou NE, J. Biotechnol., 127, 657 (2007)
Pedreschi F, Kaack K, Granby K, Food Chem., 109, 386 (2008)
Teodor E, Litescu SC, Lazar V, Somoghi R, J. Mater. Sci. -Mater. Med., 20, 1307 (2009)
Verma N, Kumar K, Kaur G, Anand S, Artif. Cells. Blood Substit. Immobil. Biotechnol., 35, 449 (2007)
Narta UK, Kanwar SS, Azmi W, Crit. Rev. Oncol. Hematol., 61, 208 (2007)
Wriston JC, Yellin TO, Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185 (1973)
Krasotkina J, Borisova AA, Gervaziev YV, Sokolov NN, Biotechnol. Appl. Biochem., 39, 215 (2004)
Muller HJ, Boos J, Crit. Rev. Oncol. Hematol., 28, 97 (1998)
Distasio JA, Salazar AM, Nadji M, Durden DL, Int. J. Cancer, 30, 343 (1982)
Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, Rempe SB, Weinstein JN, Blood, 123, 3596 (2014)
Zinn M, Witholt B, Egli T, J. Biotechnol., 113, 263 (2004)
Kumar S, Pakshirajan K, Dasu VV, Appl. Microbiol. Biotechnol., 84(3), 477 (2009)
Kumar S, Dasu VV, Pakshirajan K, Process Biochem., 45(2), 223 (2010)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265 (1951)
Haynes PA, Sheumack D, Greig LG, Kibby J, Redmond JW, J. Chromatogr. A, 588, 107 (1991)
“Biochemical engineering fundamentals / Bailey JE, Ollis DF - Version details, Trove. (2016).
Shuler ML, Kargı F, Bioprocess engineering: basic concepts, Prentice Hall (1992).
Bouguettoucha A, Balannec B, Nacef S, Amrane A, Enzyme Microb. Technol., 41(3), 377 (2007)
Yano T, Koga S, Biotechnol. Bioeng., 11, 139 (1969)
Luong JH, Biotechnol. Bioeng., 29, 242 (1987)
Gokulakrishnan S, Gummadi SN, Process Biochem., 41(6), 1417 (2006)
Luedeking R, Piret EL, J. Biochem. Microbiol. Technol. Eng., 1, 393 (1959)
Guerra NP, Agrasar AT, Macias CL, Bernardez PF, Castro LP, J. Food Eng., 82(2), 103 (2007)
Lasdon LS, Waren AD, Jain A, Ratner M, ACM Trans Math Sofrw, 3, 34 (1978)
Kumar S, Prabhu AA, Dasu VV, Pakshirajana K, Prep. Biochem. BIotech., DOI:10.1080/10826068.2016.1168841. (2016)
Mukherjee J, Majumdar S, Scheper T, Appl. Microbiol. Biotechnol., 53(2), 180 (2000)
Callewaert R, Vuyst LD, Appl. Environ. Microbiol., 66, 606 (2000)
Albanese E, Kafkewitz K, Appl. Environ. Microbiol., 36, 25 (1978)
Khamna S, Yokota A, Lumyong S, Int. J. Integr. Biol., 6, 22 (2009)
Shah AJ, Karadi RV, Parekh PP, Asian J. Biotechnol., 2, 169 (2010)
Liu FS, Zajic JE, Appl. Microbiol. Biotechnol., 25, 92 (1973)
Geckil H, Gencer S, Uckun M, Enzyme Microb. Technol., 35(2-3), 182 (2004)
Heinemann B, Howard AJ, Appl. Microbiol. Biotechnol., 18, 550 (1969)
Abdel-Fattah YR, Olama ZA, Process Biochem., 38(1), 115 (2002)
Prakasham RS, Rao CS, Rao RS, Lakshmi GS, Sarma PN, J. Appl. Microbiol., 102(5), 1382 (2007)
He Q, Li N, Chen X, Ye Q, Bai J, Xiong J, Ying H, Korean J. Chem. Eng., 28(2), 544 (2011)
Surendhiran D, Vijay M, Sivaprakash B, Sirajunnisa A, 3Biotech., 5, 663 (2015)
Tosa T, Sano R, Yamamoto K, Nakamura M, Ando K, Appl. Microbiol. Biotechnol., 22, 387 (1971)
Sun DX, Setlow P, J. Bacteriol., 173, 3831 (1991)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로