Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 23, 2016
Accepted July 23, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Magnetic field effect on the onset of Soret-driven convection of a nanofluid confined within a Hele-Shaw cell
Department of Chemical Engineering, Jeju National University, Jeju 63243, Korea
mckim@jejunu.ac.kr
Korean Journal of Chemical Engineering, January 2017, 34(1), 189-198(10), 10.1007/s11814-016-0213-4
Download PDF
Abstract
The effect of a magnetic field on the early stages of Soret-driven convection of a nanoparticle suspension with large negative separation ratio χ confined within a Hele-Shaw cell, heated from above, was analyzed. Taking the Lorentz force into account, new stability equations were formulated in a similar (τ, ζ)-domain as well as in a global (τ, z)-domain by introducing the Hele-Shaw Rayleigh number based on the Soret flux (RsH) and the Hele-Shaw Hartmann number (HaH). With and without the quasi-steadiness assumptions, the resulting stability equations were solved analytically by expanding the disturbances as a series of orthogonal functions, and also the numerical shooting method was used. The critical time of the onset of convection and the corresponding wave number were obtained as a function of RsH and HaH. It was found that the magnetic field plays a critical role in the onset of convective instability. The onset time increases with increasing HaH and decreasing RsH. The linear stability limits are independent of the solution methods, if the trial functions for the disturbance quantities are properly chosen. Based on the results of the linear stability analysis, a non-linear analysis was conducted using direct numerical simulations. The non-linear analysis revealed that the convective motion can be apparent far after the linear stability limit.
Keywords
References
Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H, J. Appl. Phys., 113, 011301 (2013)
Ryskin A, Pleiner H, Phys. Rev. E, 71, 056303 (2005)
Cerbino R, Vailati A, Giglio M, Phys. Rev. E, 66, 055301 (2002)
Cerbino R, Vailati A, Giglio M, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 83, 2023 (2003)
Cerbino R, Mazzoni S, Vailati A, Giglio M, Phys. Rev. Lett., 94, 064501 (2005)
Mazzoni S, Cerbino R, Brogioli D, Vailati A, Giglio M, Eur. Phys. J. E, 15, 305 (2004)
Winkel F, Messlinger S, Schopf W, Rehberg I, Siebenburger M, Ballauff M, New J. Phys., 12, 053003 (2010)
Messlinger S, Kramer C, Schmied JJ, Winkel F, Schopf W, Rehberg I, Phys. Rev. E, 88, 053019 (2013)
Kim MC, Hong JS, Choi CK, AIChE J., 52(7), 2333 (2006)
Kim MC, Choi CK, Phys. Rev. E, 76, 036302 (2007)
Kim MC, Eur. Phys. J. E, 34, 27 (2011)
Kim MC, Korean J. Chem. Eng., 30(4), 831 (2013)
Messlinger S, Schopf W, Rehberg I, Int. J. Heat Mass Transf., 62, 336 (2013)
Howard LN, Convection at high Rayleigh number, in: Gortler H (Ed.), Proceedings of 11th International Congress of Applied Mechanics, Munich (Germany), 1109 (1964).
Schopf W, J. Fluid Mech., 245, 263 (1992)
Kim MC, Int. J. Non-Linear Mech., 67, 291 (2014)
Chandrasekhar S, Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press (1961).
Harfash AJ, Transp. Porous Media, 103(3), 361 (2014)
Heidary H, Hosseini R, Pirmohammadi M, Kermani MJ, J. Magn. Magn. Mater., 374, 11 (2015)
Galdi GP, Straughan B, Arch. Rational Mech. Anal., 89, 211 (1985)
Riaz A, Hesse M, Tchelepi HA, Orr FM, J. Fluid Mech., 548, 87 (2006)
Selim A, Rees DAS, J. Porous Media, 10, 1 (2007)
Kim MC, Choi CK, Korean J. Chem. Eng., 32(12), 2400 (2015)
Noghrehabadi A, Rees DAS, Bassom AP, Transp. Porous Media, 99(3), 493 (2013)
Kim MC, Choi CK, Chem. Eng. Sci., 98, 255 (2013)
Deen WM, Analysis of Transport Phenomena, Oxford Univ. Press (1997).
Farrell BF, Ioannou PJ, J. Atmos. Sci., 53, 2041 (1996)
Kim MC, Choi CK, Phys. Fluids, 24, 044102 (2012)
Kim MC, Korean J. Chem. Eng., 30(6), 1207 (2013)
Tan CT, Homsy GM, Phys. Fluids, 31, 1330 (1988)
Donzelli G, Cerbino R, Vailati A, Phys. Rev. Lett., 102, 104503 (2009)
Bernardin M, Comitani F, Vailati A, Phys. Rev. E, 85, 066321 (2012)
Ryskin A, Pleiner H, Phys. Rev. E, 71, 056303 (2005)
Cerbino R, Vailati A, Giglio M, Phys. Rev. E, 66, 055301 (2002)
Cerbino R, Vailati A, Giglio M, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 83, 2023 (2003)
Cerbino R, Mazzoni S, Vailati A, Giglio M, Phys. Rev. Lett., 94, 064501 (2005)
Mazzoni S, Cerbino R, Brogioli D, Vailati A, Giglio M, Eur. Phys. J. E, 15, 305 (2004)
Winkel F, Messlinger S, Schopf W, Rehberg I, Siebenburger M, Ballauff M, New J. Phys., 12, 053003 (2010)
Messlinger S, Kramer C, Schmied JJ, Winkel F, Schopf W, Rehberg I, Phys. Rev. E, 88, 053019 (2013)
Kim MC, Hong JS, Choi CK, AIChE J., 52(7), 2333 (2006)
Kim MC, Choi CK, Phys. Rev. E, 76, 036302 (2007)
Kim MC, Eur. Phys. J. E, 34, 27 (2011)
Kim MC, Korean J. Chem. Eng., 30(4), 831 (2013)
Messlinger S, Schopf W, Rehberg I, Int. J. Heat Mass Transf., 62, 336 (2013)
Howard LN, Convection at high Rayleigh number, in: Gortler H (Ed.), Proceedings of 11th International Congress of Applied Mechanics, Munich (Germany), 1109 (1964).
Schopf W, J. Fluid Mech., 245, 263 (1992)
Kim MC, Int. J. Non-Linear Mech., 67, 291 (2014)
Chandrasekhar S, Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press (1961).
Harfash AJ, Transp. Porous Media, 103(3), 361 (2014)
Heidary H, Hosseini R, Pirmohammadi M, Kermani MJ, J. Magn. Magn. Mater., 374, 11 (2015)
Galdi GP, Straughan B, Arch. Rational Mech. Anal., 89, 211 (1985)
Riaz A, Hesse M, Tchelepi HA, Orr FM, J. Fluid Mech., 548, 87 (2006)
Selim A, Rees DAS, J. Porous Media, 10, 1 (2007)
Kim MC, Choi CK, Korean J. Chem. Eng., 32(12), 2400 (2015)
Noghrehabadi A, Rees DAS, Bassom AP, Transp. Porous Media, 99(3), 493 (2013)
Kim MC, Choi CK, Chem. Eng. Sci., 98, 255 (2013)
Deen WM, Analysis of Transport Phenomena, Oxford Univ. Press (1997).
Farrell BF, Ioannou PJ, J. Atmos. Sci., 53, 2041 (1996)
Kim MC, Choi CK, Phys. Fluids, 24, 044102 (2012)
Kim MC, Korean J. Chem. Eng., 30(6), 1207 (2013)
Tan CT, Homsy GM, Phys. Fluids, 31, 1330 (1988)
Donzelli G, Cerbino R, Vailati A, Phys. Rev. Lett., 102, 104503 (2009)
Bernardin M, Comitani F, Vailati A, Phys. Rev. E, 85, 066321 (2012)