ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 10, 2016
Accepted October 6, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Performance assessment and system optimization of a combined cycle power plant (CCPP) based on exergoeconomic and exergoenvironmental analyses

Department of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-si 17104, Korea
Korean Journal of Chemical Engineering, January 2017, 34(1), 6-19(14), 10.1007/s11814-016-0276-2
downloadDownload PDF

Abstract

We propose a systematic approach for performance evaluation and improvement of a combined cycle power plant (CCPP). Exergoeconomic and exergoenvironmental analyses are used to assess CCPP performance and suggest improvement potentials in economic and environmental aspects, respectively. Economic and environmental impacts of individual system components are calculated by cost functions and life cycle assessments. Both analyses are based on a CCPP case study located in Turkey, which consists of two gas turbine cycles and a steam turbine cycle with two different pressure heat recovery units. The results of the exergoeconomic analysis indicate that the combustion chamber and condenser have a high performance improvement potential by increasing capital cost. Furthermore, the exergoenvironmental analysis shows that the exergy destruction of the steam turbine and combustion chamber and/or the capacity of heat recovery units must be reduced in order to improve environmental performance. This study demonstrates that combined exergoeconomic and exergoenvironmental analyses are useful for finding improvement potentials for system optimization by simultaneously evaluating economic and environmental impacts.

References

Ersayin E, Ozgener I, Renew. Sust. Energ. Rev., 43, 832 (2015)
Esfahani IJ, Rashidi J, Ifaei P, Yoo CK, Korean J. Chem. Eng., 33(2), 351 (2016)
Kaviri AG, Jaafar MNM, Lazim TM, Energy Conv. Manag., 58, 94 (2012)
Ashrafizadeh SA, Amidpour M, Allahverdi A, Korean J. Chem. Eng., 29(5), 606 (2012)
Ameri M, Ahmadi P, Khanmohammadi S, Int. J. Energy Res., 32(2), 175 (2008)
Boyaghchi FA, Molaie H, Energy Conv. Manag., 99, 374 (2015)
Sharma M, Singh O, Appl. Therm. Eng., 93, 614 (2016)
Lee JH, Kwak NS, Lee IY, Jang KR, Lee DW, Jang SG, Kim BK, Shim JG, Korean J. Chem. Eng., 32(5), 800 (2015)
Rasid NSA, Syed-Hassan SSA, Kadir SASA, Asadullah M, Korean J. Chem. Eng., 30(6), 1277 (2013)
Farshi LG, Mahmoudi SMS, Rosen MA, Appl. Energy, 103, 700 (2013)
Modesto M, Nebra SA, Appl. Therm. Eng., 29, 2127 (2009)
Meyer L, Tsatsaronis G, Buchgeister J, Schebek L, Energy, 34(1), 75 (2009)
Baghernejad A, Yaghoubi M, Energy Conv. Manag., 52(5), 2193 (2011)
Ahmadi P, Dincer I, Energy Conv. Manag., 52(5), 2296 (2011)
Kelly KA, McManus MC, Hammond GP, Energy, 77, 812 (2014)
Boyano A, Morosuk T, Blanco-Marigorta AM, Tsatsaronis G, J. Clean Prod., 20, 152 (2012)
Ganjehkaviri A, Jaafar MM, Ahmadi P, Barzegaravval H, Appl. Therm. Eng., 67, 566 (2014)
Oyedepo SO, Fagbenle RO, Adefila SS, Alam M, Energy Sci. Eng., 3, 423 (2015)
Esfahani IJ, Yoo C, Energy, 75, 327 (2014)
Akbari AD, Mahmoudi SMS, Energy, 78, 501 (2014)
Vieira LS, Donatelli JL, Cruz ME, Appl. Therm. Eng., 26, 654 (2006)
Roosen P, Uhlenbtuck S, Lucas K, Int. J. Therm. Sci., 42, 553 (2003)
Esfahani IJ, Kang YT, Yoo C, Energy, 75, 312 (2014)
Lazzaretto A, Tsatsaronis G, Energy, 31(8-9), 1257 (2006)
EIA, “http://www.eia.gov/dnav/ng/hist/rngwhhdm.htm”, US (2014).
Guinee J, Int. J. Life Cycle Assess., 6, 255 (2002)
Bejan A, Tsatsaronis G, Moran MJ, Thermal design and optimization, A Wiley-Interscience Publication, New York (1996).
Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH, Hong SH, Park SJ, Korean J. Chem. Eng., 32(10), 1945 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로