Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 10, 2016
Accepted August 31, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Harvesting of Scenedesmus obliquus cultivated in seawater using electro-flotation
Heewon Shin1
Kyochan Kim1
Joo-Young Jung2 3
Sungchul Charles Bai2 4
Yong Keun Chang1 3
Jong-In Han5†
1Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea 2Department of Marine Bio-materials and Aquaculture/Feeds & Foods Nutrition Research Center, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea 3Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea 4, Korea 5Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
jihan@kaist.ac.kr
Korean Journal of Chemical Engineering, January 2017, 34(1), 62-65(4), 10.1007/s11814-016-0251-y
Download PDF
Abstract
Seawater, when supplemented to a growth medium, appears to stimulate auto-flocculation of a certain microalgae species like Scenedesmus obliquus and thus renders its harvesting easy. To make use of this unique response for the purpose of biomass harvesting, S. obliquus was grown in a seawater-added medium and then collected in electrochemically-mediated ways. Significantly higher harvesting efficiency and energy saving were observed with electroflotation (EF) than with electro-coagulation-flotation (ECF) and the standard BG11 medium. An optimal EF condition, the highest recovery rate with least energy use, was found with a supply of 0.5 A. Seawater amendment was most beneficial in a level of 10%. All this clearly showed that applying EF to cells cultivated in the seawater-supplemented medium is a promising harvesting means that enables one to obtain algae biomass without interfering with the downstream process of biodiesel production.
Keywords
References
Chisti Y, Biotechnol. Adv., 25, 294 (2007)
Goncalves AL, Pires JCM, Simoes M, Environ. Chem. Lett., 11, 315 (2013)
Rawat I, Kumar RR, Mutanda T, Bux F, Appl. Energy, 88(10), 3411 (2011)
Skjanes K, Rebours C, Lindblad P, Crit. Rev. Biotechnol., 33, 172 (2013)
Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K, Biotechnol. Bioeng., 108(10), 2320 (2011)
Christenson L, Sims R, Biotechnol. Adv., 29, 686 (2011)
Smith VH, Sturm BSM, deNoyelles FJ, Billings SA, Trends Ecol. Evol., 25, 301 (2010)
Danquah MK, Ang L, Uduman N, Moheimani N, Fordea GM, J. Chem. Technol. Biotechnol., 84(7), 1078 (2009)
Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A, J. Renewable Sustainable Energy, 2, 012701 (2010)
Sukenik A, Shelef G, Biotechnol. Bioeng., 26, 142 (1984)
Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N, Biotechnol. Prog., 24(4), 815 (2008)
Brennan L, Owende P, Renew. Sust. Energ. Rev., 14, 557 (2010)
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B, Bioenergy Res., 1, 20 (2008)
Mollah MYA, Schennach R, Parga JR, Cocke DL, J. Hazard. Mater., 84(1), 29 (2001)
Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL, J. Hazard. Mater., 114(1-3), 199 (2004)
Salim S, Bosma R, Vermue MH, Wijffels RH, J. Appl. Phycol., 23, 849 (2011)
Misra R, Guldhe A, Singh P, Rawat I, Bux F, Chem. Eng. J., 255, 327 (2014)
Jung JY, Lee H, Shin WS, Sung MG, Kwon JH, Yang JW, Bioprocess. Biosyst. Eng., 38, 449 (2015)
Alfafara CG, Nakano K, Nomura N, Igarashi T, Matsumura M, J. Chem. Technol. Biotechnol., 77(8), 871 (2002)
Lee S, Ang WS, Elimelech M, Desalination, 187(1-3), 313 (2006)
Poelman E, DePauw N, Jeurissen B, Resour. Conserv. Recycl., 19, 1 (1997)
Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y, Biotechnol. Adv., 20, 491 (2003)
Kim J, Ryu BG, Kim K, Kim BK, Han JI, Yang JW, Bioresour. Technol., 123, 164 (2012)
Goncalves AL, Pires JCM, Simoes M, Environ. Chem. Lett., 11, 315 (2013)
Rawat I, Kumar RR, Mutanda T, Bux F, Appl. Energy, 88(10), 3411 (2011)
Skjanes K, Rebours C, Lindblad P, Crit. Rev. Biotechnol., 33, 172 (2013)
Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K, Biotechnol. Bioeng., 108(10), 2320 (2011)
Christenson L, Sims R, Biotechnol. Adv., 29, 686 (2011)
Smith VH, Sturm BSM, deNoyelles FJ, Billings SA, Trends Ecol. Evol., 25, 301 (2010)
Danquah MK, Ang L, Uduman N, Moheimani N, Fordea GM, J. Chem. Technol. Biotechnol., 84(7), 1078 (2009)
Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A, J. Renewable Sustainable Energy, 2, 012701 (2010)
Sukenik A, Shelef G, Biotechnol. Bioeng., 26, 142 (1984)
Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N, Biotechnol. Prog., 24(4), 815 (2008)
Brennan L, Owende P, Renew. Sust. Energ. Rev., 14, 557 (2010)
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B, Bioenergy Res., 1, 20 (2008)
Mollah MYA, Schennach R, Parga JR, Cocke DL, J. Hazard. Mater., 84(1), 29 (2001)
Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL, J. Hazard. Mater., 114(1-3), 199 (2004)
Salim S, Bosma R, Vermue MH, Wijffels RH, J. Appl. Phycol., 23, 849 (2011)
Misra R, Guldhe A, Singh P, Rawat I, Bux F, Chem. Eng. J., 255, 327 (2014)
Jung JY, Lee H, Shin WS, Sung MG, Kwon JH, Yang JW, Bioprocess. Biosyst. Eng., 38, 449 (2015)
Alfafara CG, Nakano K, Nomura N, Igarashi T, Matsumura M, J. Chem. Technol. Biotechnol., 77(8), 871 (2002)
Lee S, Ang WS, Elimelech M, Desalination, 187(1-3), 313 (2006)
Poelman E, DePauw N, Jeurissen B, Resour. Conserv. Recycl., 19, 1 (1997)
Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y, Biotechnol. Adv., 20, 491 (2003)
Kim J, Ryu BG, Kim K, Kim BK, Han JI, Yang JW, Bioresour. Technol., 123, 164 (2012)