ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 24, 2016
Accepted August 19, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of acid treatment of Fe-BEA zeolite on catalytic N2O conversion

Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea 1Bio Resource Cycling Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 2Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Korean Journal of Chemical Engineering, January 2017, 34(1), 81-86(6), 10.1007/s11814-016-0239-7
downloadDownload PDF

Abstract

The effect of acid treatment on the physical and chemical characteristics of BEA zeolite, as well as the catalytic activity of the Fe-BEA catalyst for N2O reduction under NH3-selective catalytic reduction (NH3-SCR) conditions, was examined. The acid treatment caused dealumination of BEA and enrichment of the silanol groups on vacant Tsites and the Brønsted acid sites. As the acid treatment time increased, the silanol groups and the weak acid sites in BEA also increased. Because the weak acid sites behave as anchoring sites for Fe ions, the catalytic activity also increased as the treatment time increased. However, extended exposure of BEA to acid decreased the catalytic activity of the Fe-BEA catalyst somewhat, and decreased the silanol groups and weak acid sites. The catalytic activity and the amount of weak acid sites were well correlated with the BEA acid treatment time.

References

Shen Q, Li LD, Li JJ, Tian H, Hao ZP, J. Hazard. Mater., 163(2-3), 1332 (2009)
Yang WH, Kim MH, Korean J. Chem. Eng., 23(6), 908 (2006)
Perez-Ramırez J, Kapteijn F, Mul G, Moulijn JA, Catal. Commun., 3, 19 (2002)
Dacquin JP, Dujardin C, Granger P, Catal. Today, 137, 390 (2008)
Obalova L, Jiratova K, Kovanda F, Pacultova K, Lacny Z, Mikulova Z, Appl. Catal. B: Environ., 60(3-4), 289 (2005)
Perez-Ramirez J, Kapteijn F, Mul G, Xu XD, Moulijn JA, Catal. Today, 76(1), 55 (2002)
Tanaka S, Yuzaki K, Ito S, Kameoka S, Kunimori K, J. Catal., 200(2), 203 (2001)
Centi G, Dall'Olio L, Perathoner S, J. Catal., 192(1), 224 (2000)
Perez-Ramirez J, Mul G, Kapteijn F, Moulijn JA, Overweg AR, Domenech A, Ribera A, Arends IWCE, J. Catal., 207(1), 113 (2002)
Galle M, Agar DW, Watzenberger O, Chem. Eng. Sci., 56(4), 1587 (2001)
Delahay G, Mauvezin M, Coq B, Kieger S, J. Catal., 202(1), 156 (2001)
Coq B, Mauvezin M, Delahay G, Butet JB, Kieger S, Appl. Catal. B: Environ., 27(3), 193 (2000)
Labhsetwar N, Dhakad M, Biniwale R, Mitsuhashi T, Haneda H, Reddy PSS, Bakardjieva S, Subrt J, Kumar S, Kumar V, Saiprasad P, Rayalu S, Catal. Today, 141, 205 (2009)
Dai C, Lei Z, Wang Y, Zhang R, Chen B, Microporous Mesoporous Mater., 167, 254 (2013)
Kang M, Choi JS, Kim YT, Park ED, Shin CB, Suh DJ, Yie JE, Korean J. Chem. Eng., 26(3), 884 (2009)
Jo YB, Cha JS, Ko JH, Shin MC, Park SH, Jeon JK, Kim SS, Park YK, Korean J. Chem. Eng., 28(1), 106 (2011)
Yao J, Choi JS, Yang KS, Sun D, Chung JS, Korean J. Chem. Eng., 23(6), 888 (2006)
Gonzalez MD, Cesteros Y, Salagre P, Microporous Mesoporous Mater., 144, 162 (2011)
Akata B, Warzywoda J, Sacco A, J. Catal., 222(2), 397 (2004)
Bonetto L, Camblor MA, Corma A, Perez-Pariente J, Appl. Catal. A: Gen., 82, 37 (1992)
Vassena D, Kogelbauer A, Prins R, Catal. Today, 60(3-4), 275 (2000)
Kogel M, Monnig R, Schwieger W, Tissler A, Turek T, J. Catal., 182(2), 470 (1999)
Sugawara K, Nobukawa T, Yoshida M, Sato Y, Okumura K, Tomishige K, Kunimori K, Appl. Catal. B: Environ., 69(3-4), 154 (2007)
Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M, J. Catal., 256(2), 312 (2008)
Grossale A, Nova I, Tronconi E, Catal. Lett., 130(3-4), 525 (2009)
Zhang X, Shen Q, He C, Ma C, Cheng J, Hao Z, Catal. Commun., 18, 151 (2012)
Mauvezin M, Delahay G, Kisslich F, Coq B, Kieger S, Catal. Lett., 62(1), 41 (1999)
Kamasamudram K, Currier N, Szailer T, Yezerets A, SAE Int. J. Fuels Lubr., 3, 1664 (2010)
Oygarden AH, Perez-Ramirez J, Appl. Catal. B: Environ., 65(1-2), 163 (2006)
Muller M, Harvey G, Prins R, Microporous Mesoporous Mater., 34, 135 (2000)
Marques JP, Gener I, Ayrault P, Bordado JC, Lopes JM, Ribeiro FR, Guisnet M, C. R. Chim., 8, 399 (2005)
Moreno S, Poncelet G, Microporous Mesoporous Mater., 12, 197 (1997)
Dzwigaj S, Massiani P, Davidson A, Che M, J. Mol. Catal. A-Chem., 155(1-2), 169 (2000)
Hajjar R, Millo Y, Man PP, Che M, Dzwigaj S, J. Phys. Chem. C, 112, 20167 (2008)
Maier SM, Jentys A, Lercher JA, J. Phys. Chem. C, 115, 8005 (2011)
Trejda M, Ziolek M, Millot Y, Chalupka K, Che M, Dzwigaj S, J. Catal., 281(1), 169 (2011)
Baran R, Millot Y, Onfroy T, Krafft JM, Dzwigaj S, Microporous Mesoporous Mater., 163, 122 (2012)
Marques JP, Gener I, Ayrault P, Bordado JC, Lopes JM, Ribeiro FR, Guisnet M, Microporous Mesoporous Mater., 60, 251 (2003)
Bhering DL, Ramirez-Solis A, Mota CJA, J. Phys. Chem. B, 107(18), 4342 (2003)
Iwasaki M, Yamazaki K, Banno K, Shinjoh H, J. Catal., 260(2), 205 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로