ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 24, 2016
Accepted August 23, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhancement of gasoline selectivity in combined reactor system consisting of steam reforming of methane and Fischer-Tropsch synthesis

Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan 98164-161, Iran 1Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 2Faculty of Engineering, University of Golestan, Gorgan, Iran
fshahraki@eng.usb.ac.ir
Korean Journal of Chemical Engineering, January 2017, 34(1), 87-99(13), 10.1007/s11814-016-0242-z
downloadDownload PDF

Abstract

A two-stage, one-dimensional configuration model including the steam reforming of methane (SRM) and Fischer-Tropsch (FT) synthesis has been developed for the production of hydrocarbons. This configuration is used to investigate hydrocarbon product distribution, such as gasoline. The first SRM reactor is fed by methane and steam, and the products are converted to hydrocarbons by the second FT reactor. The model was solved numerically by applying the finite difference approximation, and the set of first-order ODEs was solved in the axial direction. The results show that complete conversion of hydrogen in the second reactor can be achieved although a small amount of carbon monoxide remains. Furthermore, at higher H2O/CH4 ratio (and low CO in feed), lower C2-C5 yield and selectivity is obtained.

References

Bartholomew CH, Farrauto RJ, In Fundamentals of industrial catalytic processes, Wiley, Hoboken, New Jersey, USA, Chapter 6 (2006).
Soliman MA, El-Nashaie SSEH, Al-Ubaid AS, Adris A, Chem. Eng. Sci., 43, 1801 (1988)
Adris AM, Lim CJ, Grace JR, Chem. Eng. Sci., 52(10), 1609 (1997)
De Falco M, Di Paola L, Marrelli L, Nardella P, Chem. Eng. J., 128(2-3), 115 (2007)
Sadooghi P, Rauch R, J. Nat. Gas. Sci. Eng., 11, 46 (2013)
Wu X, Wu C, Wu SF, Chem. Eng. Res. Des., 96, 150 (2015)
Deckwer WD, Serpemen Y, Ralek M, Schmidt B, Ind. Eng. Chem. Process Des. Dev., 21, 231 (1982)
Turner JR, Mills PL, Chem. Eng. Sci., 45, 2317 (1990)
Song HS, Ramkrishna D, Trinh S, Wright H, Korean J. Chem. Eng., 21(2), 308 (2004)
Wu JM, Zhang HT, Ying WY, Fang DY, Chem. Eng. Technol., 33(7), 1083 (2010)
Park N, Kim JR, Yoo Y, Lee J, Park MJ, Fuel, 122, 229 (2014)
Kim YH, Jun KW, Joo H, Han C, Song IK, Chem. Eng. J., 155(1-2), 427 (2009)
Avci AK, Trimm DL, Onsan ZI, Chem. Eng. Sci., 56(2), 641 (2001)
Johns M, Collier P, Spencer MS, Alderson T, Hutchings GJ, Catal. Lett., 90(3-4), 187 (2003)
Marvast MA, Sohrabi M, Zarrinpashne S, Baghmisheh G, Chem. Eng. Technol., 28(1), 78 (2005)
Pour AN, Shahri SMK, Zamani Y, Irani M, Tehrani S, J. Nat. Gas. Chem., 17, 242 (2008)
Xu J, Froment GF, AIChE J., 35, 88 (1989)
Montazer-Rahmati, Mehdi M, Bargah-Soleimani M, Can. J. Chem. Eng., 79(5), 800 (2001)
Brauer H, Chem. Ind. Technol., 29, 785 (1957)
Reichelt W, Blaβ E, Chem. Ind. Technol., 43, 949 (1971)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
De Wasch AP, Froment GF, Chem. Eng. Sci., 27, 567 (1972)
Froment GF, Bischoff KB, Chemical Reactor Analysis and Design, John Wiley, New York (1979).
Kunii D, Smith JM, AIChE J., 6, 71 (1960)
Cussler EL, Diffusion, Mass Transfer in Fluid Systems, Cambridge:Cam. Univ. Press, 525: ll (1984).
Wilke CR, Chem. Eng. Prog., 45, 218 (1949)
Panahi M, MSc thesis, Sharif University of Technology, Tehran, Iran (2005).
Krishnamoorthy S, Li AW, Iglesia E, Catal. Lett., 80(1-2), 77 (2002)
Rahimpour MR, Elekaei H, Fuel Process. Technol., 90(6), 747 (2009)
Everson RC, Woodburn ET, Kirk ARM, J. Catal., 53, 186 (1978)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로