ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 15, 2016
Accepted July 2, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Energy management in multi stage evaporator through a steady and dynamic state analysis

Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, India
manikfpt@iitr.ac.in
Korean Journal of Chemical Engineering, October 2017, 34(10), 2570-2583(14), 10.1007/s11814-017-0180-4
downloadDownload PDF

Abstract

Increasing energy demand, high cost of energy and global warming issues across the globe require energyintensive industries, such as paper mills to improve energy efficiency. Multi-stage evaporators used to concentrate the black liquor in such mills form its most energy consuming unit and require a strong understanding of steady and unsteady state behavior to ensure energy savings. The modeling of nonlinear heptads’ effect system yielded a set of complex nonlinear algebraic and differential equations that are analyzed using Interior-point method and state space representation. Dynamic response of product concentration and system vapor temperatures along with system stability and controllability have been explored by disturbing the flow rate, concentration and temperature of feed, and fresh steam flow rate. Simulations predict that steam flow rate, feed flow rate and its concentration invariably are major controlling factors (in decreasing order) of vapor temperature and product concentration. The interactive behavior between different effects translates into slower responses of the effects with increasing separation from disturbance source. This steady state and transient study opens many new explanations to this relatively less explored area and helps to propose and implement industrial PID controllers to reduce steam consumption and control product quality.

References

Johnson T, Johnson B, Mukherjee KHA, http://webcache.googleusercontent.com/search?q=cache:4wppefVmJTkJ:becaamec.co.nz/media/~/media/beca_amec/media/technical_papers/india_emerging_giant_pulp_paper_industry.ashx+&cd=5&hl=en&ct=clnk&gl=in.
Verma OP, Suryakant, G. Manik, Int. J. Syst. Assur. Eng. Manage., 1 (2016), DOI:10.1007/s13198-016-0533-0.
Laurijssen J, Faaij A, Worrell E, Appl. Energy, 98, 102 (2012)
Jyoti G, Khanam S, Int. J. Therm. Sci., 76, 110 (2014)
Sarkar P, Datta S, Bhattacharjee C, Bhattacharya PK, Gupta BB, Korean J. Chem. Eng., 23(4), 617 (2006)
Naqvi M, Yan JY, Dahlquist E, Appl. Energy, 90(1), 24 (2012)
Marshman DJ, Chmelyk T, Sidhu MS, Gopaluni RB, Dumont GA, Appl. Energy, 87(11), 3514 (2010)
Kim JW, Lalvani SB, Akash BA, Korean J. Chem. Eng., 12(5), 582 (1995)
Esfahani IJ, Rashidi J, Ifaei P, Yoo CK, Korean J. Chem. Eng., 33(2), 351 (2016)
Kumar D, Kumar V, Singh VP, Appl. Math. Model., 37, 384 (2013)
El-Dessouky HT, Ettouney HM, Desalination, 125(1-3), 259 (1999)
Huang YC, Hung CI, Chen CK, Proc. Inst. Mech. Eng. Part A J. Power Energy, 214, 61 (2000)
Sharma R, Mitra S, Int. J. Green Energy, 2, 109 (2005)
Bhargava R, Khanam S, Mohanty B, Ray AK, Comput. Chem. Eng., 32(10), 2203 (2008)
Ding XD, Cai WJ, Jia L, Wen CY, Appl. Energy, 86(1), 81 (2009)
Khanam S, Mohanty B, Desalination, 262(1-3), 64 (2010)
Wu SY, Jiang L, Xiao L, Li YR, Xu JL, Int. J. Green Energy, 9, 780 (2012)
Srivastava D, Mohanty B, Bhargava R, Chem. Eng. Commun., 200(8), 1089 (2013)
Xevgenos D, Michailidis P, Dimopoulos K, Krokida M, Loizidou M, Desalin Water Treat, 53, 3407 (2015)
Verma OP, Mohammed TH, Mangal S, Manik G, Int. J. Syst. Assur. Eng. Manage., 1 (2016).
Oh J, Ye IS, Park S, Ryu C, Park SK, Korean J. Chem. Eng., 31(12), 2136 (2014)
Kaya D, Sarac HI, Energy, 32(8), 1536 (2007)
Khanam S, Mohanty B, Appl. Energy, 87(4), 1102 (2010)
Karlsson M, Appl. Energy, 88(3), 577 (2011)
Lambert RN, Joye DD, Koko FW, Ind. Eng. Chem. Res., 26, 100 (1987)
Gautami G, Khanam S, Desalination, 288, 16 (2012)
Ayangbile WO, Okeke EO, Beveridge GSG, Pergamon, 8 (1984), DOI:10.1016/0098-1354(84)87011-8.
Higa M, Freitas AJ, Bannwart AC, Zemp RJ, Appl. Therm. Eng., 29, 515 (2009)
Tuan CI, Yeh YL, Hsu LF, Chen TC, Korean J. Chem. Eng., 29(3), 341 (2012)
Winchester JA, Marsh C, Dyn. Control, 77 (1999), DOI:10. 1205/026387699526340.
Andre H, Ritter RA, Can. J. Chem. Eng., 46, 259 (1968)
Shin H, Lim YK, Oh SK, Lee SG, Lee JM, Korean J. Chem. Eng., 34(2), 287 (2017)
Newelll RB, Fisher DG, Ind. Eng. Chem. Process Des. Dev., 11(2), 213 (1972)
Izawa Y, Hakomori K, Trans. Soc. Instrum Control Eng., 32, 197 (1996)
To LC, Tade MO, Le Page GP, Control Eng. Practice, 6, 1309 (1998)
Adams GJ, Burke BJ, Goodwin GC, The International Federationof Automatic Control, 41 (2008), DOI:10.3182/20080706-5- KR-1001.02356.
Verma OP, Haji TM, Mangal S, Manik G, Int. J. Control, 9, 5287 (2016)
Yadav P, Jana AK, Chemical Product and Process Modeling Simulation and Control of a Commercial Double Effect Evaporator: Tomato Juice, 5 (2010), DOI:10.2202/1934-2659.1443.
Stefanov Z, Hoo KA, Ind. Eng. Chem. Res., 44(9), 3146 (2005)
Russell NT, Bakker HHC, Chaplin RI, Chem. Eng. Res. Des., 78(8), 1120 (2000)
Costa AOS, Lima EL, Can. J. Chem. Eng., 81, 1032 (2008)
Runyon CH, Rumsey TR, McCarthy KL, J. Food Eng., 14, 185 (1991)
Miranda V, Simpson R, J. Food Eng., 66(2), 203 (2005)
Verma OP, Mohammed TH, Mangal S, Manik G, In: Proc. Fifth Int. Conf. Soft Comput. Probl. Solving SocProS 2015, Vol. 2, Singapore: Springer Singapore; 2016, p. 1011- 42.
Pourrajabian A, Ebrahimi R, Mirzaei M, Shams M, Appl. Math. Comput., 219, 11483 (2013)
Yan W, Liu F, Chung CY, Wong KP, IEEE Trans Power Syst., 21, 1163 (2006)
Mesfun S, Toffolo A, Appl. Energy, 107, 98 (2013)
Kuhn HW, Tuckerm A, Proc. Second Symp. Math. Stat. Probab., 481 (1951), DOI:10.1007/BF01582292.
Verma OP, Mohammed TH, Mangal S, Manik G, Energy, 129, 148 (2017)
Albuquerque JS, Gopal V, Staus GH, Biegler LT, Erik Ydstie B, Comput. Chem. Eng., 21, S853 (1997)
Kojima M, Megiddo N, Mizuno S, Math Program, 61, 263 (1993)
Kusiak A, Xu GL, Zhang ZJ, Energy Conv. Manag., 85, 146 (2014)
Grossmann IE, Caballero JA, Yeomans H, Korean J. Chem. Eng., 16(4), 407 (1999)
Kang J, Cao YK, Word DP, Laird CD, Comput. Chem. Eng., 71, 563 (2014)
Khanam S, Mohanty B, Comput. Chem. Eng., 35(10), 1983 (2011)
Verma OP, Manik G, Jain VK, J. Comput. Sci., (2017), DOI:10.1016/j.jocs.2017.04.001.
Verma OP, Mohammed TH, Mangal S, Manik G, Trans. Inst. Meas Control, 142331217700239 (2017), DOI:10.1177/0142331217700239.
Verma OP, Kumar S, Manik G, Proc. Fourth Int. Conf. Soft Comput. Probl. Solving SocProS 2014, Vol. 2, New Delhi: Springer India, 103 (2015).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로