ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 16, 2016
Accepted June 12, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Pb(II) ion adsorption by biomass-based carbonaceous fiber modified by the integrated oxidation and vulcanization

Engineering Laboratory of Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, P. R. China 1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, P. R. China
101011398@seu.edu.cn
Korean Journal of Chemical Engineering, October 2017, 34(10), 2619-2630(12), 10.1007/s11814-017-0162-6
downloadDownload PDF

Abstract

Biomass-based activated carbonaceous fiber (ACF) was modified by nitric-acid oxidation under microwave heating (ACF-O) and then further treated by thioglycolic acid (ACF-S) to prepare carbon materials with high capability for the removal of Pb(II) ions. The physico-chemical properties of the original and modified ACF samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Zeta potential, Boehm titration, BET, Raman spectrum and X-ray photoelectron spectroscopy (XPS). It was found that modification treatments damage the pore and graphite crystalline structure of ACF, while the micropore structure is protected and extra oxygen-containing surface functional groups are grafted on its surface. The adsorption performance of the original and the modified ACF samples affected by adsorption conditions regarding to Pb(II) ion strength (10mg/L- 105mg/L), contact time (10min-120 min), pH value (2.5-6.5), and solvent temperature (15 °C-45 °C) was investigated through batch experiments. Compared to the maximum Pb(II) ion adsorption capacity of 75.24mg/g by ACF sample, the value was substantially improved by the integrated modification method (193.42mg/g for ACF-O and 209.21mg/g for ACF-S sample). The Biot number determined from the homogeneous surface diffusion model (HSDM) was between 1 and 100 for the original and modified ACF samples, suggesting that the adsorption process of Pb(II) ions is limited by both the surface diffusion and film mass transfer.

References

Babic BM, Milonjic SK, Polovina MJ, Carbon, 40(7), 1109 (2002)
Phan NH, Rio S, Faur C, Le Coq L, Le Cloirec P, Nguyen TH, Carbon, 44(12), 2569 (2006)
Liu QS, Zheng T, Wang P, Jiang JP, Li N, Chem. Eng. J., 157(2), 348 (2010)
Chung JT, Hwang KJ, Shim WG, Kim C, Park JY, Choi DY, Lee JW, Mater. Lett., 93, 401 (2013)
Pelekani C, Snoeyink VL, Carbon, 38(10), 1423 (2000)
Tamai H, Yoshida T, Sasaki M, Yasuda H, Carbon, 37(6), 983 (1999)
Kang KC, Kim SS, Choi JW, Kwon SH, J. Ind. Eng. Chem., 14(1), 131 (2008)
Xiu GH, Li P, Carbon, 38(7), 975 (2000)
Tang DY, Zheng Z, Lin K, Luan JF, Zhang JB, J. Hazard. Mater., 143(1), 49 (2007)
Zhou L, Renew. Sust. Energ. Rev., 9(4), 395 (2005)
Chen JP, Wu S, Chong KH, Carbon, 41(10), 1979 (2003)
Gupta VK, Nayak A, Agarwal S, Environ. Eng. Sci., 20(1), 1 (2015)
Saleh TA, Gupta VK, Adv. Colloid Interface Sci., 211, 93 (2014)
Gupta VK, Saleh TA, Environ. Sci. Pollut. Res., 20(5), 2828 (2013)
Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA, Adv. Colloid Interface Sci., 193-194, 24 (2013)
Karthikeyan S, Gupta VK, Boopathy R, Titus A, Sekaran G, J. Mol. Liq., 173, 153 (2012)
Gupta VK, Mittal A, Jhare D, Mittal J, RSC Adv., 2(22), 8381 (2012)
Jain AK, Gupta VK, Bhatnagar A, Suhas, Sep. Sci. Technol., 38(2), 463 (2003)
Ge X, Ma X, Wu Z, Xiao X, Yan Y, Res. Chem. Intermed., 41(10), 7327 (2014)
Lisovskii A, Shter GE, Semiat R, Aharoni C, Carbon, 35(10), 1645 (1997)
Shen W, Li Z, Liu Y, R. Pat. Chem. Eng., 1(1), 27 (2010)
Yao SH, Zhang JJ, Shen DK, Xiao R, Gu S, Zhao M, Liang JY, J. Colloid Interface Sci., 463, 118 (2016)
Lagadic IL, Mitchell MK, Payne BD, Environ. Sci. Technol., 35(5), 984 (2001)
Xue X, Li F, Microporous Mesoporous Mater., 116(1-3), 116 (2008)
Dong TTX, Zhao KJ, Huang WZ, Leung KW, Tsim KWK, Phytother. Res., 19(8), 684 (2005)
Suresh S, Srivastava VC, Mishra IM, Theor. Found. Chem. Eng., 47(3), 284 (2013)
Menendez JA, Illan-Gomez MJ, Leon Y, Radovic R, Carbon, 33(11), 1655 (1995)
Chingombe P, Saha B, Wakeman RJ, Carbon, 43(15), 3132 (2005)
Chandra TC, Mirna MM, Sunarso J, Sudaryanto Y, Ismadji S, J. Taiwan Inst. Chem. E., 40(4), 457 (2009)
Hesas RH, Arami-Niya A, Wan Daud WMA, Sahu JN, J. Anal. Appl. Pyrolysis, 104, 176 (2013)
Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U, Carbon, 43(8), 1731 (2005)
Wang HJ, Zhou AL, Peng F, Yu H, Yang J, J. Colloid Interface Sci., 316(2), 277 (2007)
Gong JL, Zhang YL, Jiang Y, Zeng GM, Cui ZH, Liu K, Deng CH, Niu QY, Deng JH, Huan SY, Appl. Surf. Sci., 330, 148 (2015)
Parat C, Cornu JY, Schneider A, Authier L, Sapin-Didier V, Denaix L, Potin-Gautier M, Anal. Chim. Acta, 648(2), 157 (2009)
Parshotam H, Gericke G, Ngila JC, Mishra S, Water SA, 42(1), 171 (2016)
Shahid M, Dumat C, Aslam M, Pinelli E, Chem. Spec. Bioavailab., 24(4), 248 (2012)
Tan WT, Ooi ST, Lee CK, Environ. Technol., 14(3), 277 (1993)
Dwivedi CP, Sahu JN, Mohanty CR, J. Hazard. Mater., 156(1), 596 (2008)
Chen H, Zhao J, Wu JY, Dai GL, J. Hazard. Mater., 192(1), 246 (2011)
Bautista-Toledo MI, Rivera-Utrilla J, Ocampo-Perez R, Carbon, 73, 338 (2014)
Shrestha S, Son G, Lee SH, Lee TG, Chemosphere, 92(8), 1053 (2013)
Theivarasu C, Mylsamy S, Int. J. Food Sci. Technol., 2(11), 6284 (2010)
Oliveira EA, Montanher SF, Andrade AD, Nobrega JA, Rollemberg MC, Process Biochem., 40(11), 3485 (2005)
Kercher AK, Nagle DC, Carbon, 41(1), 15 (2003)
Xu CB, Tsubouchi N, Hashimoto H, Ohtsuka Y, Fuel, 84(14-15), 1957 (2005)
Chen Y, Zhu Y, Wang Z, Li Y, Wang L, Ding L, Gao X, Ma Y, Guo Y, Adv. Colloid Interface Sci., 163(1), 39 (2011)
Chen CJ, Li X, Tong ZF, Li Y, Li MF, Appl. Surf. Sci., 315, 203 (2014)
Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D, Carbon, 41(5), 1057 (2003)
Sheng C, Fuel, 86(15), 2316 (2007)
Chai LY, Li QZ, Zhu YH, Zhang ZY, Wang QW, Wang YY, Yang ZH, Bioresour. Technol., 101(15), 6269 (2010)
Hamza IAA, Martincigh BS, Ngila JC, Nyamori VO, Phys. Chem. Earth, Parts, 66, 157 (2013)
Huang J, Ye M, Qu Y, Chu L, Chen R, He Q, Xu D, J. Colloid Interface Sci., 385(1), 137 (2012)
Karthik R, Meenakshi S, Chem. Eng. J., 263, 168 (2015)
Sahu MK, Mandal S, Dash SS, Badhai P, Patel RK, J. Environ. Chem. Eng., 1(4), 1315 (2013)
Chakravarty S, Mohanty A, Sudha TN, Upadhyay AK, Konar J, Sircar JK, Madhukar A, Gupta KK, J. Hazard. Mater., 173(1-3), 502 (2010)
Viegas RMC, Campinas M, Costa H, Rosa MJ, Adsorption, 20(5-6), 737 (2014)
Satoh K, Fan HJ, Hattori H, Tajima K, Furuya E, J. Hazard. Mater., 155(3), 397 (2008)
Baup S, Jaffre C, Wolbert D, Laplanche A, Adsorption, 6(3), 219 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로