ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 6, 2017
Accepted July 3, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Carbamazepine and oxcarbazepine removal in pharmaceutical wastewater treatment plant using a mass balance approach: A case study

CSIR- National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India 1Visvesvaraya National Institute of Technology (VNIT), Nagpur-440010, India
Korean Journal of Chemical Engineering, October 2017, 34(10), 2662-2671(10), 10.1007/s11814-017-0190-2
downloadDownload PDF

Abstract

The manufacturing of the antiepileptics, carbamazepine (CBZ) and oxcarbazepine (oxCBZ), results in generation of wastewater containing these micropollutants which exhibit toxicity even at trace levels. Therefore, we focused on monitoring their fate and removal in various units of a full-scale wastewater treatment plant (WWTP) using mass balance approach. An apparent CBZ removal of 50±3% was observed by conventional activated sludge process in the biological treatment unit, whereas oxCBZ still persisted after the biological treatment and showed negative mass balance. However, reverse osmosis resulted in 91% oxCBZ removal, whereas CBZ still continued to persist as a result of lower solubility of CBZ as compared to oxCBZ. Only 3% CBZ exhibited sorption onto the suspended solids and sludge, which was negligible for oxCBZ, thus demonstrating their tendency to remain in aqueous phase. Additionally, we attempted to understand the fundamental mechanism behind the removal of these pharmaceuticals and it was apparently the collective effect of sorption, mineralization, biotransformation, biodegradation, phototransformation/ photodegradation, etc. Thus, the integrative data presented in the present study on productivity of these pharmaceuticals, their mass loading in influent and effluents allied with their removal efficiency will be significantly constructive in benchmarking the operational effectiveness through operational optimization and design improvement of the current conventional treatment plant.

References

Paltiel O, Fedorova G, Tadmor G, Kleinstern G, Maor Y, Chefetz B, Environ. Sci. Technol., 50(8), 4476 (2016)
de Jongh CM, Kooij PJF, de Voogt P, ter Laak TL, Sci. Total Environ., 427, 70 (2012)
Fick J, Soderstrom H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ, Environ. Toxicol. Chem., 28(12), 2522 (2009)
Deegan AM, Shaik B, Nolan K, Urell K, Oelgemoller M, Tobin J, Morrissey A, Int. J. Environ. Sci. Technol., 8(3), 649 (2011)
Jelic A, Gros M, Petrovic M, Ginebreda A, Barcelo D, The Handbook of Environmental Chemistry, 19, 1 (2012).
Knopp G, Prasse C, Ternes TA, Cornel P, Water Res., 100, 580 (2016)
Gadipelly C, Perez-Gonzalez A, Yadav GD, Ortiz I, Ibanez R, Rathod VK, Marathe KV, Ind. Eng. Chem. Res., 53(29), 11571 (2014)
Zhang Y, Geiβen SU, Gal C, Chemosphere, 73, 1151 (2008)
Miao XS, Yang JJ, Metcalfe CD, Environ. Sci. Technol., 39, 7469 (2005)
Leclercq M, Mathieu O, Gomez E, Casellas C, Fenet H, Hillaire-Buys D, Arch. Environ. Contam. Toxicol., 56, 408 (2009)
Collado N, Rodriguez-Mozaz S, Gros M, Rubirola A, Barcelo D, Comas J, Rodriguez-Roda I, Buttiglieri G, Environ. Pollut., 185, 202 (2014)
Gurke R, Roβler M, Marx C, Diamond S, Schubert S, Oertel R, Fauler J, Sci. Total Environ., 532, 762 (2015)
Phillips PJ, Smith SG, Koplin DW, Zaugg SD, Buxton HT, Furlong ET, Esposito K, Stinson B, Environ. Sci. Technol., 44(13), 4910 (2010)
Puig S, Loosdrecht MCM, Colprim J, Meijer SCF, Water Res., 42(18), 4645 (2008)
Cirja M, Ivaschechkin P, Schaffer A, Corvini PFX, Rev. Environ. Sci. Biotechnol., 7(1), 61 (2008)
Klein C, O’Connor S, Locke J, D. S. Aga Ed., CRC Press, New York (2008).
Deng J, Shao YS, Gao NY, Xia SJ, Tan CQ, Zhou SQ, Hu XH, Chem. Eng. J., 222, 150 (2013)
Bernhard M, Muller J, Knepper TP, Water Res., 40(18), 3419 (2006)
Behera SK, Kim HW, Oh J, Park H, Sci. Total Environ., 409(20), 4351 (2011)
Paxeus N, Water Sci. Technol., 50(5), 253 (2004)
Clara M, Strenn B, Kreuzinger N, Water Res., 38(4), 947 (2004)
Marx C, Gunther N, Schubert S, Oertel R, Ahnert M, Krebs P, Kuehn V, Sci. Total Environ., 538, 779 (2015)
Verlicchi P, Aukidy MA, Zambello E, Sci. Total Environ., 429, 123 (2012)
Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A, Water Res., 38(19), 4075 (2004)
Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, Siegrist H, Water Res., 39(14), 3139 (2005)
POSEIDON Final Report, T. Ternes, Contract No. EVK1-CT-2000-00047 (2006).
Laurentiis ED, Chiron S, Kouras-Hadef S, Richard C, Minella M, Maurino V, Minero C, Vione D, Environ. Sci. Technol., 46(15), 8164 (2012)
Heidler J, Halden RU, Environ. Sci. Technol., 42(17), 6324 (2008)
Kaiser E, Prasse C, Wagner M, Broder K, Ternes TA, Environ. Sci. Technol., 48(17), 10208 (2014)
Li Z, Fenet H, Gomez E, Chiron S, Water Res., 45(4), 1587 (2011)
Hubner U, Seiwert B, Reemtsma T, Jekel M, Water Res., 49, 34 (2014)
Monsalvo VM, Lopez J, Munoz M, de Pedro ZM, Casas JA, Mohedano AF, Rodriguez JJ, Chem. Eng. J., 264, 856 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로