Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 14, 2017
Accepted July 2, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Spectroscopic investigation, cage occupancy, and gas storage capacity of hydroquinone clathrates formed with H2S-N2 and COS-N2 binary gas mixtures
Department of Environmental Engineering, Kongju National University, 1223-24 Cheonan-daero, Cheonan-si, Chungnam 31080, Korea 1Clean Fuel Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 2Department of Energy and Resources Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea
Korean Journal of Chemical Engineering, October 2017, 34(10), 2710-2714(5), 10.1007/s11814-017-0184-0
Download PDF
Abstract
The objective of this investigation was to determine whether hydroquinone (HQ) can form clathrate compounds with two sulfides (hydrogen sulfide (H2S) and carbonyl sulfide (COS)) at their diluted concentrations. Hydroquinone samples obtained at ambient temperature and at two pressures (40 and 80 bar) for binary gas mixtures consisting of H2S-N2 and COS-N2, were analyzed using solid-state 13C NMR and Raman spectroscopy. An elemental analyzer was also used to obtain quantitative information regarding the kind and amount of gas captured in the solid samples. Results show that H2S can be concentrated within the solid clathrate from H2S-containing gas, while COS is little captured after reaction with the COS-containing gas. This suggests that the HQ clathrate can be used to remove H2S, and that selective separation can be achieved when two sulfides of H2S and COS coexist. On the basis of the calculated cage occupancies of the gas components in the solid clathrate, the enclathration preference of the gas components used in this research was found to be the order of H2S>N2>COS.
References
Beer JM, Prog. Energy Combust. Sci., 26, 301 (2000)
Chauk SS, Agnihotri R, Jadhav RA, Misro SK, Fan LS, AIChE J., 46(6), 1157 (2000)
An H, Yang WM, Chou SK, Chua KJ, Appl. Energy, 99, 363 (2012)
Jiaqiang E, Liu T, Yang WM, Li J, Gong JK, Deng YW, Energy Conv. Manag., 117, 410 (2016)
Liu H, Ma JEX, Xie C, Dry Technol., 34, 1397 (2016)
Huhtala A, Remes P, Energy Policy, 105, 320 (2017)
Tola V, Pettinau A, Appl. Energy, 113, 1461 (2014)
Matson SL, Herrick CS, Ward WJ, Ind. Eng. Chem. Process Des. Dev., 16, 370 (1977)
Watts SF, Atmos. Environ., 34, 761 (2000)
Rosso I, Galletti C, Bizzi M, Saracco G, Specchia V, Ind. Eng. Chem. Res., 42(8), 1688 (2003)
Gupta R, Gangwal SK, Jain SC, Energy Fuels, 6, 21 (1992)
Miura K, Mae K, Inoue T, Yoshimi T, Nakagawa H, Hashimoto K, Ind. Eng. Chem. Res., 31, 415 (1992)
Yan G, Weng H, Yang J, Bao W, Gao Y, Yin Y, Korean J. Chem. Eng., 33(8), 2359 (2016)
Park YC, Lee JS, Moon JH, Min BM, Shim DM, Sung HJ, Korean J. Chem. Eng., 34(3), 921 (2017)
Sakanishi K, Wu ZH, Matsumura A, Saito I, Hanaoka T, Minowa T, Tada M, Iwasaki T, Catal. Today, 104(1), 94 (2005)
Dou J, Zhao Y, Tahmasebi A, Yu J, Korean J. Chem. Eng., 33(10), 2849 (2016)
Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, 3rd Ed.; CRC Press, Boca Raton, FL (2008).
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Ma CF, Chen GJ, Wang F, Sun CY, Guo TM, Fluid Phase Equilib., 191(1-2), 41 (2001)
Seol J, Lee JW, Shin WC, Koh DY, Lee J, Lee H, J. Phys. Chem., 114, 17960 (2010)
Kang SP, Lee JW, Ind. Eng. Chem. Res., 52(1), 303 (2013)
Lee JW, Lee Y, Takeya S, Kawamura T, Yamamoto Y, Lee YJ, Yoon JH, J. Phys. Chem. B, 114(9), 3254 (2010)
Lee JW, Choi KJ, Lee Y, Yoon JH, Chem. Phys. Lett., 528, 34 (2012)
Lee JW, Kang SP, Yoon JH, J. Phys. Chem., 118, 6059 (2014)
Lee JW, Kang SP, Yoon JH, J. Phys. Chem., 118, 7705 (2014)
Mohammadi AH, Richon D, J. Chem. Eng. Data, 54(8), 2338 (2009)
Liang SA, Kusalik PG, J. Phys. Chem. B, 114(29), 9563 (2010)
Mohammadi-Manesh H, Alavi S, Woo TK, Najafi B, Phys. Chem. Chem. Phys., 13, 2367 (2011)
Atwood JL, Davies JED, MacNicol DD, Inclusion Compounds, Academic Press, Florida (1984).
Lee JW, Poudel J, Cha M, Yoon SJ, Yoon JH, Energy Fuels, 30(9), 7604 (2016)
Ripmeester JA, Chem. Phys. Lett., 74, 536 (1980)
Kubinyi MJ, Keresztury G, Mikrochim. Acta, 14, 525 (1997)
Lee JW, Yoon JH, J. Phys. Chem., 115, 22647 (2011)
Anderson A, Demoor S, Hanson RC, Chem. Phys. Lett., 140, 471 (1987)
Maki AG, Wells JS, Burkholder JB, J. Mol. Spectrosc., 147, 173 (1991)
Chauk SS, Agnihotri R, Jadhav RA, Misro SK, Fan LS, AIChE J., 46(6), 1157 (2000)
An H, Yang WM, Chou SK, Chua KJ, Appl. Energy, 99, 363 (2012)
Jiaqiang E, Liu T, Yang WM, Li J, Gong JK, Deng YW, Energy Conv. Manag., 117, 410 (2016)
Liu H, Ma JEX, Xie C, Dry Technol., 34, 1397 (2016)
Huhtala A, Remes P, Energy Policy, 105, 320 (2017)
Tola V, Pettinau A, Appl. Energy, 113, 1461 (2014)
Matson SL, Herrick CS, Ward WJ, Ind. Eng. Chem. Process Des. Dev., 16, 370 (1977)
Watts SF, Atmos. Environ., 34, 761 (2000)
Rosso I, Galletti C, Bizzi M, Saracco G, Specchia V, Ind. Eng. Chem. Res., 42(8), 1688 (2003)
Gupta R, Gangwal SK, Jain SC, Energy Fuels, 6, 21 (1992)
Miura K, Mae K, Inoue T, Yoshimi T, Nakagawa H, Hashimoto K, Ind. Eng. Chem. Res., 31, 415 (1992)
Yan G, Weng H, Yang J, Bao W, Gao Y, Yin Y, Korean J. Chem. Eng., 33(8), 2359 (2016)
Park YC, Lee JS, Moon JH, Min BM, Shim DM, Sung HJ, Korean J. Chem. Eng., 34(3), 921 (2017)
Sakanishi K, Wu ZH, Matsumura A, Saito I, Hanaoka T, Minowa T, Tada M, Iwasaki T, Catal. Today, 104(1), 94 (2005)
Dou J, Zhao Y, Tahmasebi A, Yu J, Korean J. Chem. Eng., 33(10), 2849 (2016)
Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, 3rd Ed.; CRC Press, Boca Raton, FL (2008).
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Ma CF, Chen GJ, Wang F, Sun CY, Guo TM, Fluid Phase Equilib., 191(1-2), 41 (2001)
Seol J, Lee JW, Shin WC, Koh DY, Lee J, Lee H, J. Phys. Chem., 114, 17960 (2010)
Kang SP, Lee JW, Ind. Eng. Chem. Res., 52(1), 303 (2013)
Lee JW, Lee Y, Takeya S, Kawamura T, Yamamoto Y, Lee YJ, Yoon JH, J. Phys. Chem. B, 114(9), 3254 (2010)
Lee JW, Choi KJ, Lee Y, Yoon JH, Chem. Phys. Lett., 528, 34 (2012)
Lee JW, Kang SP, Yoon JH, J. Phys. Chem., 118, 6059 (2014)
Lee JW, Kang SP, Yoon JH, J. Phys. Chem., 118, 7705 (2014)
Mohammadi AH, Richon D, J. Chem. Eng. Data, 54(8), 2338 (2009)
Liang SA, Kusalik PG, J. Phys. Chem. B, 114(29), 9563 (2010)
Mohammadi-Manesh H, Alavi S, Woo TK, Najafi B, Phys. Chem. Chem. Phys., 13, 2367 (2011)
Atwood JL, Davies JED, MacNicol DD, Inclusion Compounds, Academic Press, Florida (1984).
Lee JW, Poudel J, Cha M, Yoon SJ, Yoon JH, Energy Fuels, 30(9), 7604 (2016)
Ripmeester JA, Chem. Phys. Lett., 74, 536 (1980)
Kubinyi MJ, Keresztury G, Mikrochim. Acta, 14, 525 (1997)
Lee JW, Yoon JH, J. Phys. Chem., 115, 22647 (2011)
Anderson A, Demoor S, Hanson RC, Chem. Phys. Lett., 140, 471 (1987)
Maki AG, Wells JS, Burkholder JB, J. Mol. Spectrosc., 147, 173 (1991)