Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 8, 2017
Accepted June 20, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Gasification characteristics of glass fiber-reinforced plastic (GFRP) wastes in a microwave plasma reactor
Young Min Yun
Myung Won Seo1†
Ho Won Ra1
Sang Jun Yoon1
Tae-Young Mun1
Ji-Hong Moon1
Jin Woo Kook1
Yong Ku Kim1
Jae Goo Lee1
Jae Ho Kim1†
Plasma Team, Vitzro Tech, Ansan, Gyonggi-do 15603, Korea 1Clean Fuel Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea
mwseo82@kier.re.kr
Korean Journal of Chemical Engineering, October 2017, 34(10), 2756-2763(8), 10.1007/s11814-017-0168-0
Download PDF
Abstract
The effects of plasma power (1-1.8kW), oxygen/fuel (0-2.5) and steam/fuel ratios (0-1) on the gasification characteristics of glass fiber-reinforced plastic (GFRP) wastes have been determined in a microwave plasma reactor. GFRP, which is thermosetting plastic composed of glass fibers embedded within a polymer matrix, was used as an experimental sample. While carbon conversion increased with oxygen/fuel ratio, syngas heating value and cold gas efficiency decreased with oxygen supply due to the onset of combustion. With increasing steam/fuel ratio, water-gas shift and ion-reforming reaction favored higher concentration of H2. Increasing the plasma power was found to promote the conversion of carbon dioxide to carbon monoxide. The char surfaces of GFRP that were subjected to variable power and oxygen supplies were analyzed by scanning electron microscopy.
References
Jahn B, Witten E, The global CRP 2013 Report (Market development, trends challenges and opportunities), Sept (2013).
Gray L, MANE-6960- Solid and Hazardous waste prevention and control Engineering, Renselaer Hartford, U.S.A. (2014).
Jung SH, Cho MH, Kang BS, Kim JS, Fuel Process. Technol., 91(3), 277 (2010)
Bae JS, Lee DW, Park SJ, Lee YJ, Hong JC, Han C, Choi YC, Korean J. Chem. Eng., 30(2), 321 (2013)
Noma A, Mawatari M, Goto C, Hoshi Y, Inoue K, Yoshikawa K, Ind. Eng. Chem. Res., 45(14), 5127 (2006)
Kuo YM, Wang CT, Tsai CH, Wang LC, J. Hazard. Mater., 162(1), 469 (2009)
Uhm HS, Hong YC, Shin DH, Plasma Sources Sci. Technol., 15(2), S26 (2006)
Roth JR, Industrial Plasma Engineering, London: Institute of Physics (1945).
Hong YC, Lee SJ, Shin DH, Kim YJ, Lee BJ, Cho SY, Chang HS, Energy, 47(1), 36 (2012)
Yoon SJ, Lee JG, Int. J. Hydrog. Energy, 37(22), 17093 (2012)
Shie JL, Chen LX, Lin KL, Chang CY, Energy, 66, 82 (2014)
Tang L, Huang H, Fuel, 84(16), 2055 (2005)
Yoon SJ, Yun YM, Seo MW, Kim YK, Ra HW, Lee JG, Int. J. Hydrog. Energy, 38, I4559 (2013)
Basu P, Combustion and gasification in fluidized beds, Boca Raton: Taylor and Francis (2006).
Huang J, Dincer I, Int. J. Hydrog. Energy, 39(7), 3294 (2014)
Levko D, Shchedrin A, Chernyak V, Olszewski S, Nedybaliuk O, J. Phys. D-Appl. Phys., 44, 145206 (2011)
Hrabovsky M, The Open Plasma Physics J., 2, 99 (2009).
Zhang Q, Dor L, Fenigshtein D, Yang W, Blasiak W, Appl. Energy (2011), DOI:10.1016/j.penergy.2011.01.041.
Govind R, Shah J, AIChE J., 30(1), 79 (1984)
Moon S, Choe W, Phys. Plasma, 9, 4045 (2002)
Spencer L, Gallimore A, Plasma Chem. Plasma Process (2010), DOI:10.1007/s1 1090-010-9273-0.
Liu CJ, Xu GH, Wang TM, Fuel Process. Technol., 58(2-3), 119 (1999)
Sharma RK, Wooten JB, Baliga VL, Hajaligol MR, Fuel, 80, 1825 (2001)
Sukiran MA, Kheang LS, Bakar NA, May CY, Am. J. Appl. Sci., 8(10), 984 (2011)
Bae JS, Lee DW, Lee YJ, Park SJ, Park JH, Hong JC, Kim JG, Yoon SP, Kim HT, Han C, Choi YC, Powder Technol., 254, 72 (2014)
Kelly RM, Kennerley JR, Rudd CD, Compos. Sci. Technol., 60, 509 (2000)
Lopez FA, Martin MI, Alguacil FJ, Rincon JM, Centeno TA, Romero M, J. Anal. Appl. Pyrolysis, 93, 104 (2012)
Gray L, MANE-6960- Solid and Hazardous waste prevention and control Engineering, Renselaer Hartford, U.S.A. (2014).
Jung SH, Cho MH, Kang BS, Kim JS, Fuel Process. Technol., 91(3), 277 (2010)
Bae JS, Lee DW, Park SJ, Lee YJ, Hong JC, Han C, Choi YC, Korean J. Chem. Eng., 30(2), 321 (2013)
Noma A, Mawatari M, Goto C, Hoshi Y, Inoue K, Yoshikawa K, Ind. Eng. Chem. Res., 45(14), 5127 (2006)
Kuo YM, Wang CT, Tsai CH, Wang LC, J. Hazard. Mater., 162(1), 469 (2009)
Uhm HS, Hong YC, Shin DH, Plasma Sources Sci. Technol., 15(2), S26 (2006)
Roth JR, Industrial Plasma Engineering, London: Institute of Physics (1945).
Hong YC, Lee SJ, Shin DH, Kim YJ, Lee BJ, Cho SY, Chang HS, Energy, 47(1), 36 (2012)
Yoon SJ, Lee JG, Int. J. Hydrog. Energy, 37(22), 17093 (2012)
Shie JL, Chen LX, Lin KL, Chang CY, Energy, 66, 82 (2014)
Tang L, Huang H, Fuel, 84(16), 2055 (2005)
Yoon SJ, Yun YM, Seo MW, Kim YK, Ra HW, Lee JG, Int. J. Hydrog. Energy, 38, I4559 (2013)
Basu P, Combustion and gasification in fluidized beds, Boca Raton: Taylor and Francis (2006).
Huang J, Dincer I, Int. J. Hydrog. Energy, 39(7), 3294 (2014)
Levko D, Shchedrin A, Chernyak V, Olszewski S, Nedybaliuk O, J. Phys. D-Appl. Phys., 44, 145206 (2011)
Hrabovsky M, The Open Plasma Physics J., 2, 99 (2009).
Zhang Q, Dor L, Fenigshtein D, Yang W, Blasiak W, Appl. Energy (2011), DOI:10.1016/j.penergy.2011.01.041.
Govind R, Shah J, AIChE J., 30(1), 79 (1984)
Moon S, Choe W, Phys. Plasma, 9, 4045 (2002)
Spencer L, Gallimore A, Plasma Chem. Plasma Process (2010), DOI:10.1007/s1 1090-010-9273-0.
Liu CJ, Xu GH, Wang TM, Fuel Process. Technol., 58(2-3), 119 (1999)
Sharma RK, Wooten JB, Baliga VL, Hajaligol MR, Fuel, 80, 1825 (2001)
Sukiran MA, Kheang LS, Bakar NA, May CY, Am. J. Appl. Sci., 8(10), 984 (2011)
Bae JS, Lee DW, Lee YJ, Park SJ, Park JH, Hong JC, Kim JG, Yoon SP, Kim HT, Han C, Choi YC, Powder Technol., 254, 72 (2014)
Kelly RM, Kennerley JR, Rudd CD, Compos. Sci. Technol., 60, 509 (2000)
Lopez FA, Martin MI, Alguacil FJ, Rincon JM, Centeno TA, Romero M, J. Anal. Appl. Pyrolysis, 93, 104 (2012)