ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 22, 2017
Accepted July 8, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Particle deposition behaviors of monolithic De-NOx catalysts for selective catalytic reduction (SCR)

College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
chunhuawang@nuaa.edu.cn
Korean Journal of Chemical Engineering, November 2017, 34(11), 2832-2839(8), 10.1007/s11814-017-0195-x
downloadDownload PDF

Abstract

A major issue when using selective catalytic reduction (SCR) De-NOx catalysts is the risk of physical deactivation due to particle deposition and plugging of the monolithic catalysts. In the present study, numerical computations were carried out to investigate the particle deposition behaviors in monolithic SCR catalysts. Based on the calculation results, the effects of particle diameter, particle density, gas velocity, turbulent intensity, chemical reaction and channel size on particle deposition were analyzed in detail. Increasing gas velocity and equivalent diameter of channel can mitigate particle deposition. The increases of turbulent intensity and channel length both lead to the rise of particle deposition ratio. For particles with high Stokes number, particle deposition mainly takes place in the inlet section of catalysts. For particles with low Stokes number, sediment can be observed in the middle and outlet sections of catalysts. De-NOx chemical reaction can mitigate particle deposition, but the effect of chemical reaction on particle deposition is inactive.

References

Benson SA, Laumb JD, Crocker CR, Pavlish JH, Fuel Process. Technol., 86(5), 577 (2005)
Lei ZG, Liu XY, Jia MR, Energy Fuels, 23, 6146 (2009)
Lei ZG, Wen CP, Zhang J, Chen BH, Ind. Eng. Chem. Res., 50(10), 5942 (2011)
Czarnecki L, Oliveira P, Emerging challenges and design strategies for SCR systems, Proc. of ASME Power Conference, Maryland, U.S.A. (2014).
Xu YY, Zhang Y, Liu FN, Shi WF, Yuan JQ, Comput. Chem. Eng., 69, 19 (2014)
Guha A, J. Aerosol Sci., 28(8), 1517 (1997)
Guha A, Annual Review Fluid Mechanics, 40, 311 (2008)
Liu JQEM, Deng YW, Zhu H, Gong JK, Canadian J. Chem. Eng., 94, 168 (2016)
Xie JQELF, Zuo QS, Zhang GJ, Atmospheric Pollution Research, 7, 9 (2016)
Strom H, Sasic S, Andersson B, Ind. Eng. Chem. Res., 50(6), 3194 (2011)
Strom H, Sasic S, Andersson B, Chem. Eng. Sci., 69(1), 231 (2012)
Tanno K, Kurose R, Michioka T, Makino H, Komori S, Adv. Powder Technol., 23, 879 (2013)
Yao J, Zhong ZP, Zhu L, Chem. Eng. Technol., 38(2), 283 (2015)
Chen JW, Yang H, Wang N, Ring Z, Dabros T, Appl. Catal. A: Gen., 345(1), 1 (2008)
Roduit B, Baiker K, Bettoni F, Baldyga J, Wokaun A, AIChE J., 44(12), 2731 (1998)
Khodayari R, Odenbrand CUI, Chem. Eng. Sci., 54(12), 1775 (1999)
Yao J, Zhong ZP, Zhang XY, Canadian J. Chem. Eng., 92, 803 (2014)
Heiredal ML, Jensen AD, Thogersen JR, Frandsen FJ, Friemann JU, AIChE J., 59(6), 1919 (2013)
Heinl E, Bohnet M, Powder Technol., 159(2), 95 (2005)
Nova E, Master Thesis, University of Colorado, U.S.A. (2007).
Wang CH, Zhou JZ, Zhou JH, Flow Turbulence and Combustion, 97, 591 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로