ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 6, 2017
Accepted July 24, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092, P. R. China
mzhang@tongji.edu.cn, freda1102@163.com
Korean Journal of Chemical Engineering, November 2017, 34(11), 2879-2885(7), 10.1007/s11814-017-0203-1
downloadDownload PDF

Abstract

Phosphorus is the crucial factor causing eutrophication in the aquatic ecology. The high phosphorus loading in water bodies may result from the direct disposal of untreated wastewater. In this study, a fluidized bed reactor (FBR) was specially developed to remove and recover phosphorus effectively and efficiently via struvite crystallization. Different physiochemical and hydraulic conditions, including hydraulic retention time (HRT), pH, and molar ratios of Mg : P, N: P and Ca :Mg, were explored to optimize the performance of this improved FBR. For the continuous operating trials, promising removal and recovery efficiencies were achieved at the phosphorus concentration of 25.0mg/L: >90% of phosphorus could be removed under the optimum condition (pH=9, HRT=12 h, Mg : P=1.25 and N : P= 7.5). Increasing the recycle flow rate and prolonging the contact time could also enhance the FBR efficiency. The crystal products obtained in FBR were analyzed in terms of composition and structure. Results indicated that almost pure struvite (>99%) was achieved at low calcium concentrations, which could be considered as a high quality fertilizer.

References

Withers PJA, Elser JJ, Hilton J, Ohtake H, Schipper WJ, van Dijk KC, Green Chem., 17, 2087 (2015)
Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, Cornwell JC, Fisher TR, Glibert PM, Hagy JD, Harding LW, Houde ED, Kimmel DG, Miller WD, Newell RIE, Roman MR, Smith EM, Stevenson JC, Mar. Ecol. Prog. Ser., 303, 1 (2005)
Havens KE, James RT, Lake Reserv. Manage., 21, 139 (2005)
Boon PI, Cook P, Woodland R, Mar. Freshw. Res., 67, 72 (2016)
Davis JR, Koop K, Hydrobiologia, 559, 23 (2006)
Karydis M, Kitsiou D, Environ. Monit. Assess., 184, 4931 (2012)
Zhao J, Feng X, Shi X, Bai Y, Yu X, Shi X, Zhang W, Zhang R, Mar. Pollut. Bull., 99, 76 (2015)
Tsugeki NK, Agusa T, Ueda S, Kuwae M, Oda H, Tanabe S, Tani Y, Toyoda K, Wang W, Urabe J, Ecol. Res., 27, 1041 (2012)
Zhang Y, Yao X, Qin B, Environ. Sci. Pollut. Res., 23, 12811 (2016)
Balmer P, Phosphorous Recovery, an Overview of Potentials and Possibilities, Norwegian Univ. Sci. Technol., Trondheim (2003).
Birnhack L, Nir O, Telzhenski M, Lahav O, Environ. Technol., 36, 1892 (2015)
Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA, Crit. Rev. Environ. Sci. Technol., 39, 433 (2009)
Ye X, Ye ZL, Lou YY, Pan SQ, Wang XJ, Wang MK, Chen SH, Powder Technol., 295, 16 (2016)
Hiroyuki H, Toru S, in 2003 3rd Int. Symp. Environ. Conscious Des. Inverse Manuf. 2003 EcoDesign 03, 422 (2003).
Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA, Environ. Technol., 28, 1245 (2007)
Mehta CM, Batstone DJ, Water Res., 47, 2890 (2013)
Liu ZG, Zhao QL, Lee DJ, Yang N, Bioresour. Technol., 99(14), 6488 (2008)
Kang DY, Lim JH, Lee TY, Lee JK, Korean J. Chem. Eng., 32(11), 2342 (2015)
Dai H, Lu X, Peng Y, Zou H, Shi J, Chemosphere, 165, 211 (2016)
Bhuiyan MIH, Mavinic DS, Koch FA, Water Sci. Technol., 57, 175 (2008)
Fang C, Zhang R, Jiang R, Ohtake H, Sci. Rep., 6, 32215 (2016)
Fattah KP, Mavinic DS, Koch FA, Jacob C, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 43, 756 (2008)
Huchzermeier MP, Tao W, Water Environ. Res., 84, 34 (2012)
Britton A, Koch FA, Mavinic DS, Adnan A, Oldham WK, Udala B, J. Environ. Eng. Sci., 4, 265 (2005)
Pastor L, Mangin D, Barat R, Seco A, Bioresour. Technol., 99(14), 6285 (2008)
Bhuiyan MIH, Mavinic DS, Koch FA, Chemosphere, 70, 1347 (2008)
de-Bashan LE, Bashan Y, Water Res., 38, 4222 (2004)
Huang H, Mavinic DS, Lo KV, Koch FA, Environ. Technol., 27, 233 (2006)
Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA, J. Cryst. Growth, 283(3-4), 514 (2005)
Wang J, Burken JG, Zhang XQ, Surampalli R, J. Environ. Eng.-ASCE, 131, 1433 (2005)
Pastor L, Mangin D, Ferrer J, Seco A, Bioresour. Technol., 101(1), 118 (2010)
Dunn S, Impey S, Kimpton C, Parsons SA, Doyle J, Jefferson B, Water Sci. Technol., 49, 183 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로