Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 2, 2017
Accepted July 2, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Evaluation of the operating parameters for the separation of xylitol from a mixed sugar solution by using a polyethersulfone nanofiltration membrane
1Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, 43600 Selangor, Malaysia 2Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Korean Journal of Chemical Engineering, November 2017, 34(11), 2944-2957(14), 10.1007/s11814-017-0186-y
Download PDF
Abstract
Nanofiltration (NF) membranes may offer a good route for the recovery of xylitol due to the difference in the size of its particles compared to the other sugars. We evaluated the ability of an in-house polyethersulfone (PES) NF membrane to separate xylitol from a simulated broth solution containing xylose and arabinose. Initially, a Box-Behnken design was utilized to optimize the factors that were significantly involved in the recovery of xylitol, such as the concentration of the components, the composition of the solution, and the pressure. The results obtained from the analysis of the experimental response revealed that the fabricated PES membrane was able to retain 92% of the xylitol and remove 50% of the arabinose, with the purity of the xylitol being enhanced accordingly. The results of fouling showed a good membrane performance for long-term filtration. The concentration polarization was dominated by the membrane pores and the charge. It could be concluded that nanofiltration has a high potential to recover xylitol from its corresponding sugars.
References
Tamburini E, Costa S, Marchetti MG, Pedrini P, Biomolecules, 5, 1979 (2015)
Kresnowati M, Mardawati E, Setiadi T, Modern Appl. Sci., 9, 206 (2015)
Mah K, Yussof H, Jalanni N, Seman MA, Zainol N, Journal Teknologi, 70 (2014).
Mun LW, Universiti Malaysia Pahang (2015).
Qi BK, Luo JQ, Chen XR, Hang XF, Wan YH, Bioresour. Technol., 102(14), 7111 (2011)
Murthy GS, Sridhar S, Sunder MS, Shankaraiah B, Ramakrishna M, Sep. Purif. Technol., 44(3), 221 (2005)
Faneer KA, Rohani R, Mohammad AW, J. Phys. Sci., 28, 73 (2017)
Faneer KA, Rohani R, Mohammad AW, Polym. Polym. Compos., 24, 803 (2016)
Affleck RP, Recovery of xylitol from fermentation of model hemicellulose hemicellulose hydrolysates using membrane technology, Virginia Polytechnic Institute and State University (2000).
Mussatto SI, Santos JC, Ricardo WC, Silva SS, J. Chem. Technol. Biotechnol., 81(11), 1840 (2006)
Montgomery DC, Design and analysis of experiments, John Wiley & Sons (2008).
Ba-Abbad MM, Chai PV, Takriff MS, Benamor A, Mohammad AW, Mater. Des., 86, 948 (2015)
Fard GC, Mirjalili M, Najafi F, J. Taiwan Inst. Chem. Engineers, 70, 188 (2017)
Natrella M, NIST/SEMATECH e-Handbook of Statistical Methods (2010).
Stafiej A, Pyrzynska K, Ranz A, Lankmayr E, J. Biochem. Biophys. Methods, 69, 15 (2006)
Mohamed R, Mkhalid I, Azaam E, Mater. Sci. Appl., 2, 981 (2011)
Antony J, Design of experiments for engineers and scientists, Elsevier (2014).
Muhamad MS, Salim MR, Lau WJ, Korean J. Chem. Eng., 32(11), 2319 (2015)
Koo CC, Wong K, Chong W, Thiam H, J. Eng. Sci. Technol., 11, 987 (2016)
Pabby AK, Rizvi SS, Requena AMS, chemical, pharmaceutical, food, and biotechnological applications, CRC Press (2015).
Kumar SM, Madhu GM, Roy S, Sep. Purif. Technol., 57(1), 25 (2007)
Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674 (2016)
Feng CS, Shi BL, Li GM, Wu YL, J. Membr. Sci., 237(1-2), 15 (2004)
Rohani R, Hyland M, Patterson D, J. Membr. Sci., 382(1-2), 278 (2011)
Jafarzadeh NK, Sharifnia S, Hosseini SN, Rahimpour F, Korean J. Chem. Eng., 28(2), 531 (2011)
Alaoui A, Kacemi KE, Ass KE, Kitane S, Trans. Indian Inst. Metals, 68, 943 (2015)
Chauhan G, Pant KK, Nigam KD, Green Processing Synthesis, 2, 259 (2013)
Mulder J, Basic principles of membrane technology, Springer Science & Business Media (2012).
Goulas AK, Kapasakalidis PG, Sinclair HR, Rastall RA, Grandison AS, J. Membr. Sci., 209(1), 321 (2002)
Causserand C, Rouaix S, Akbari A, Aimar P, J. Membr. Sci., 238(1-2), 177 (2004)
Sjoman E, Manttari M, Nystrom M, Koivikko H, Heikkila H, J. Membr. Sci., 292(1-2), 106 (2007)
Chemeo. 2016. “Chemical Properties of Xylitol.” Accessed 19 Oct https://www.chemeo.com/cid/69-231-9/Xylitol.
Braeken L, Ramaekers R, Zhang Y, Maes G, Van der Bruggen B, Vandecasteele C, J. Membr. Sci., 252(1-2), 195 (2005)
Mah K, Yussof H, Jalanni N, Seman MA, Zainol N, Jurnal Teknologi., 1, 93 (2014)
da Silva SS, Chandel AK, D-Xylitol, Springer (2012).
Gray MC, Converse AO, Wyman CE, Biotechnology for Fuels and Chemicals, Springer, 179 (2003).
Chung YT, Ba-Abbad MM, Mohammad AE, Hairom NHH, Benamor A, Mater. Des., 87, 780 (2015)
Peydayesh M, Bagheri M, Mohammadi T, Bakhtiari O, RSC Adv., 7, 24995 (2017)
Jelmy EJ, Ramakrishnan S, Devanathan S, Rangarajan M, Kothurkar NK, J. Appl. Polym. Sci., 130(2), 1047 (2013)
Abuhabib A, Ghasemi M, Mohammad AW, Rahman RA, El-Shafie A, Arabian J. Sci. Eng., 38, 2929 (2013)
Salimon J, Abdullah BM, Salih N, Chem. Central J., 6, 1 (2012)
Rezaei H, Ashtiani FZ, Fouladitajar A, Brazilian J. Chem. Eng., 31, 503 (2014)
Almazan JE, Romero-Dondiz EM, Rajal VB, Castro-Vidaurre EF, Chem. Eng. Res. Des., 94, 485 (2015)
Vegas R, Moure A, Dominguez H, Parajo JC, Alvarez JR, Luque S, Desalination, 199(1-3), 541 (2006)
Kresnowati M, Mardawati E, Setiadi T, Modern Appl. Sci., 9, 206 (2015)
Mah K, Yussof H, Jalanni N, Seman MA, Zainol N, Journal Teknologi, 70 (2014).
Mun LW, Universiti Malaysia Pahang (2015).
Qi BK, Luo JQ, Chen XR, Hang XF, Wan YH, Bioresour. Technol., 102(14), 7111 (2011)
Murthy GS, Sridhar S, Sunder MS, Shankaraiah B, Ramakrishna M, Sep. Purif. Technol., 44(3), 221 (2005)
Faneer KA, Rohani R, Mohammad AW, J. Phys. Sci., 28, 73 (2017)
Faneer KA, Rohani R, Mohammad AW, Polym. Polym. Compos., 24, 803 (2016)
Affleck RP, Recovery of xylitol from fermentation of model hemicellulose hemicellulose hydrolysates using membrane technology, Virginia Polytechnic Institute and State University (2000).
Mussatto SI, Santos JC, Ricardo WC, Silva SS, J. Chem. Technol. Biotechnol., 81(11), 1840 (2006)
Montgomery DC, Design and analysis of experiments, John Wiley & Sons (2008).
Ba-Abbad MM, Chai PV, Takriff MS, Benamor A, Mohammad AW, Mater. Des., 86, 948 (2015)
Fard GC, Mirjalili M, Najafi F, J. Taiwan Inst. Chem. Engineers, 70, 188 (2017)
Natrella M, NIST/SEMATECH e-Handbook of Statistical Methods (2010).
Stafiej A, Pyrzynska K, Ranz A, Lankmayr E, J. Biochem. Biophys. Methods, 69, 15 (2006)
Mohamed R, Mkhalid I, Azaam E, Mater. Sci. Appl., 2, 981 (2011)
Antony J, Design of experiments for engineers and scientists, Elsevier (2014).
Muhamad MS, Salim MR, Lau WJ, Korean J. Chem. Eng., 32(11), 2319 (2015)
Koo CC, Wong K, Chong W, Thiam H, J. Eng. Sci. Technol., 11, 987 (2016)
Pabby AK, Rizvi SS, Requena AMS, chemical, pharmaceutical, food, and biotechnological applications, CRC Press (2015).
Kumar SM, Madhu GM, Roy S, Sep. Purif. Technol., 57(1), 25 (2007)
Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674 (2016)
Feng CS, Shi BL, Li GM, Wu YL, J. Membr. Sci., 237(1-2), 15 (2004)
Rohani R, Hyland M, Patterson D, J. Membr. Sci., 382(1-2), 278 (2011)
Jafarzadeh NK, Sharifnia S, Hosseini SN, Rahimpour F, Korean J. Chem. Eng., 28(2), 531 (2011)
Alaoui A, Kacemi KE, Ass KE, Kitane S, Trans. Indian Inst. Metals, 68, 943 (2015)
Chauhan G, Pant KK, Nigam KD, Green Processing Synthesis, 2, 259 (2013)
Mulder J, Basic principles of membrane technology, Springer Science & Business Media (2012).
Goulas AK, Kapasakalidis PG, Sinclair HR, Rastall RA, Grandison AS, J. Membr. Sci., 209(1), 321 (2002)
Causserand C, Rouaix S, Akbari A, Aimar P, J. Membr. Sci., 238(1-2), 177 (2004)
Sjoman E, Manttari M, Nystrom M, Koivikko H, Heikkila H, J. Membr. Sci., 292(1-2), 106 (2007)
Chemeo. 2016. “Chemical Properties of Xylitol.” Accessed 19 Oct https://www.chemeo.com/cid/69-231-9/Xylitol.
Braeken L, Ramaekers R, Zhang Y, Maes G, Van der Bruggen B, Vandecasteele C, J. Membr. Sci., 252(1-2), 195 (2005)
Mah K, Yussof H, Jalanni N, Seman MA, Zainol N, Jurnal Teknologi., 1, 93 (2014)
da Silva SS, Chandel AK, D-Xylitol, Springer (2012).
Gray MC, Converse AO, Wyman CE, Biotechnology for Fuels and Chemicals, Springer, 179 (2003).
Chung YT, Ba-Abbad MM, Mohammad AE, Hairom NHH, Benamor A, Mater. Des., 87, 780 (2015)
Peydayesh M, Bagheri M, Mohammadi T, Bakhtiari O, RSC Adv., 7, 24995 (2017)
Jelmy EJ, Ramakrishnan S, Devanathan S, Rangarajan M, Kothurkar NK, J. Appl. Polym. Sci., 130(2), 1047 (2013)
Abuhabib A, Ghasemi M, Mohammad AW, Rahman RA, El-Shafie A, Arabian J. Sci. Eng., 38, 2929 (2013)
Salimon J, Abdullah BM, Salih N, Chem. Central J., 6, 1 (2012)
Rezaei H, Ashtiani FZ, Fouladitajar A, Brazilian J. Chem. Eng., 31, 503 (2014)
Almazan JE, Romero-Dondiz EM, Rajal VB, Castro-Vidaurre EF, Chem. Eng. Res. Des., 94, 485 (2015)
Vegas R, Moure A, Dominguez H, Parajo JC, Alvarez JR, Luque S, Desalination, 199(1-3), 541 (2006)