Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 30, 2017
Accepted August 1, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of organic and inorganic metal salts on thermogravimetric pyrolysis of biomass components
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China 1College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
slzhao_seu@163.com
Korean Journal of Chemical Engineering, December 2017, 34(12), 3077-3084(8), 10.1007/s11814-017-0209-8
Download PDF
Abstract
Thermogravimetric analyzer (TGA) was employed to elucidate the catalytic effects of organic and inorganic metal salts (K2CO3, KAc, Na2CO3 and NaAc) on the pyrolysis of three biomass components (cellulose, hemicellulose and lignin). In case of cellulose, TG analysis results showed that all the four metal salts increased the yield of char products and decreased the weight loss rates of cellulose pyrolysis, which followed the order of Na2CO3>K2CO3>NaAc>KAc. In contrast to cellulose, the four organic and inorganic salts employed had no significant effects on the remaining two biomass components:, hemicellulose and lignin. However, the four metal salts led to the devolatilization reaction of hemicellulose to occur at lower temperature region, and the dehydration reaction of lignin was promoted more or less. An increase in the heating rate might augment the maximum degradation rate. Different mixing ratios had little influence on the progress of catalytic pyrolysis. Based on the observations, the potential mechanism of the catalytic pyrolysis of biomass components with metal salts was discussed.
Keywords
References
Long Y, Zhou H, Meng A, Li Q, Zhang Y, Korean J. Chem. Eng., 33(9), 2638 (2016)
Mamaeva A, Tahmasebi A, Yu J, Korean J. Chem. Eng., 34(3), 672 (2017)
Chen W, Annamalai K, Sun J, Chen Y, Korean J. Chem. Eng., 33(8), 2330 (2016)
Kim YM, Han TU, Hwang BA, Lee B, Lee HW, Park YK, Kim S, Korean J. Chem. Eng., 33(8), 2350 (2016)
Han TU, Kim YM, Watanabe A, Teramae N, Park YK, Kim S, Korean J. Chem. Eng., 34(4), 1214 (2017)
Choi JH, Kim SS, Suh DJ, Jang EJ, Min KI, Woo HC, Korean J. Chem. Eng., 33(9), 2691 (2016)
Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK, J. Ind. Eng. Chem., 40, 1 (2016)
Li J, Dai JJ, Liu GQ, Zhang HD, Gao ZP, Fu J, He YF, Huang Y, Biomass Bioenerg., 94, 228 (2016)
Baloch HA, Yang T, Sun H, Li J, Nizamuddin S, Li R, Kou Z, Sun Y, Bhutto AW, Korean J. Chem. Eng., 33(9), 2567 (2016)
Gargiulo V, Alfe M, Giudicianni P, Ragucci R, J. Anal. Appl. Pyrolysis, 121, 128 (2016)
Li H, Kemija u industriji,, 64, 473 (2015)
Xing S, Yuan H, Huhetaoli, Qi Y, Lv P, Energy, 114, 643 (2016)
Eom IY, Kim JY, Kim TS, Lee SM, Choi D, Choi IG, Choi JW, Bioresour. Technol., 104, 687 (2012)
Reverte C, Dirion JL, Cabassud M, J. Anal. Appl. Pyrolysis, 79, 297 (2007)
Hu S, Acta Energiae Solaris Sinica., 29, 1038 (2008)
Gottipati R, Mishra S, J. Fuel Chem. Technol., 39, 265 (2011)
Coats AW, Redfern JP, Thermochim. Acta, 24, 182 (1964)
Yang HP, Huan BJ, Chen YQ, Gao Y, Li J, Chen HP, Energy Fuels, 30(8), 6430 (2016)
Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
Nowakowski DJ, Jones JM, Brydson RMD, Ross AB, Fuel, 86(15), 2389 (2007)
El-Sayed SA, Mostafa ME, Waste. Biomass Valori., 6, 401 (2015)
Coats AW, Redfern JP, Thermochim. Acta, 24, 182 (1978)
Kitani O, Hall CW, Wagener K, Biomass handbook (1989).
Updegraff DM, Anal. Biochem., 32, 420 (1969)
Braun JL, Holtman KM, Kadla JF, Carbon, 43, 385 (2005)
Sevilla M, Fuertes AB, Carbon, 47, 2281 (2009)
Baccile N, Falco C, Titirici MM, Green Chem., 46, 4839 (2014)
Jing Z, Yong SC, Chang GY, Kim TH, Brown RC, Acs. Sustain. Chem. Eng., 3, 293 (2015)
Patwardhan PR, Satrio JA, Brown RC, Shanks BH, Bioresour. Technol., 101(12), 4646 (2010)
Patwardhan PR, Satrio JA, Brown RC, Shanks BH, J. Anal. Appl. Pyrolysis, 86, 323 (2009)
Vinu R, Broadbelt LJ, Energy Environ. Sci., 5, 9808 (2012)
Yang CY, Xue-Song LU, Lin WG, Yang XM, Yao JZ, Chem. Res. Chinese U., 22, 524 (2006)
Iii JBP, Pithawalla YB, Naworal JD, J. Anal. Appl. Pyrolysis, 82, 10 (2008)
Iii JBP, Pithawalla YB, Naworal JD, J. Anal. Appl. Pyrolysis, 80, 297 (2007)
Deng J, Xiong T, Wang H, Zheng A, Wang Y, Acs. Sustain. Chem. Eng., 4, 3750 (2016)
Wang J, Kaskel S, J. Mater. Chem., 22, 237110 (2012)
Mamaeva A, Tahmasebi A, Yu J, Korean J. Chem. Eng., 34(3), 672 (2017)
Chen W, Annamalai K, Sun J, Chen Y, Korean J. Chem. Eng., 33(8), 2330 (2016)
Kim YM, Han TU, Hwang BA, Lee B, Lee HW, Park YK, Kim S, Korean J. Chem. Eng., 33(8), 2350 (2016)
Han TU, Kim YM, Watanabe A, Teramae N, Park YK, Kim S, Korean J. Chem. Eng., 34(4), 1214 (2017)
Choi JH, Kim SS, Suh DJ, Jang EJ, Min KI, Woo HC, Korean J. Chem. Eng., 33(9), 2691 (2016)
Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK, J. Ind. Eng. Chem., 40, 1 (2016)
Li J, Dai JJ, Liu GQ, Zhang HD, Gao ZP, Fu J, He YF, Huang Y, Biomass Bioenerg., 94, 228 (2016)
Baloch HA, Yang T, Sun H, Li J, Nizamuddin S, Li R, Kou Z, Sun Y, Bhutto AW, Korean J. Chem. Eng., 33(9), 2567 (2016)
Gargiulo V, Alfe M, Giudicianni P, Ragucci R, J. Anal. Appl. Pyrolysis, 121, 128 (2016)
Li H, Kemija u industriji,, 64, 473 (2015)
Xing S, Yuan H, Huhetaoli, Qi Y, Lv P, Energy, 114, 643 (2016)
Eom IY, Kim JY, Kim TS, Lee SM, Choi D, Choi IG, Choi JW, Bioresour. Technol., 104, 687 (2012)
Reverte C, Dirion JL, Cabassud M, J. Anal. Appl. Pyrolysis, 79, 297 (2007)
Hu S, Acta Energiae Solaris Sinica., 29, 1038 (2008)
Gottipati R, Mishra S, J. Fuel Chem. Technol., 39, 265 (2011)
Coats AW, Redfern JP, Thermochim. Acta, 24, 182 (1964)
Yang HP, Huan BJ, Chen YQ, Gao Y, Li J, Chen HP, Energy Fuels, 30(8), 6430 (2016)
Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
Nowakowski DJ, Jones JM, Brydson RMD, Ross AB, Fuel, 86(15), 2389 (2007)
El-Sayed SA, Mostafa ME, Waste. Biomass Valori., 6, 401 (2015)
Coats AW, Redfern JP, Thermochim. Acta, 24, 182 (1978)
Kitani O, Hall CW, Wagener K, Biomass handbook (1989).
Updegraff DM, Anal. Biochem., 32, 420 (1969)
Braun JL, Holtman KM, Kadla JF, Carbon, 43, 385 (2005)
Sevilla M, Fuertes AB, Carbon, 47, 2281 (2009)
Baccile N, Falco C, Titirici MM, Green Chem., 46, 4839 (2014)
Jing Z, Yong SC, Chang GY, Kim TH, Brown RC, Acs. Sustain. Chem. Eng., 3, 293 (2015)
Patwardhan PR, Satrio JA, Brown RC, Shanks BH, Bioresour. Technol., 101(12), 4646 (2010)
Patwardhan PR, Satrio JA, Brown RC, Shanks BH, J. Anal. Appl. Pyrolysis, 86, 323 (2009)
Vinu R, Broadbelt LJ, Energy Environ. Sci., 5, 9808 (2012)
Yang CY, Xue-Song LU, Lin WG, Yang XM, Yao JZ, Chem. Res. Chinese U., 22, 524 (2006)
Iii JBP, Pithawalla YB, Naworal JD, J. Anal. Appl. Pyrolysis, 82, 10 (2008)
Iii JBP, Pithawalla YB, Naworal JD, J. Anal. Appl. Pyrolysis, 80, 297 (2007)
Deng J, Xiong T, Wang H, Zheng A, Wang Y, Acs. Sustain. Chem. Eng., 4, 3750 (2016)
Wang J, Kaskel S, J. Mater. Chem., 22, 237110 (2012)