ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 31, 2017
Accepted August 9, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Multilateral approaches for investigation of particle stickiness of coal ash at low temperature fouling conditions

1Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China 2Department of Energy Systems Research, Graduate School, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Korea
htkim@ajou.ac.kr
Korean Journal of Chemical Engineering, December 2017, 34(12), 3102-3110(9), 10.1007/s11814-017-0217-8
downloadDownload PDF

Abstract

Particle stickiness is a key parameter for increasing ash deposition in gasification process. We conducted multilateral investigations to evaluate particle stickiness of coal ash at low temperature fouling conditions through Watt and Fereday’s viscosity model, dilatometry (DIL) and laser flash apparatus (LFA) technique. Seventeen coals were employed for ash deposition experiments under gasification condition through drop tube furnace (DTF). The low viscosity not only led to increasing ash deposition behavior, but also increasing the particle size of deposited ash. From DIL analysis, the ash sintering behavior increased with increasing temperature due to increase of particle stickiness. The high amount of Fe2O3, CaO and MgO components resulted in low sintering temperature and high reduction of physical length. Through LFA analysis, the thermal conductivity increased with increasing temperature, because of increasing particle stickiness. In addition, its value was correlated with the propensity of common fouling indices.

References

Li Feng-Hai, Ma Xiu-Wei, Guo Qian-Qian, Fan Hong-Li, Xu Mei-Ling, Liu Qing-Hua, Fang Yi-Tian, Fuel Process. Technol., 152, 124 (2016)
Wu Xiaojiang, Zhang Xiang, Dai Baiqian, Xu Xueyuan, Zhang Jianwen, Zhang Lian, Fuel Process. Technol., 152, 176 (2016)
Dai BQ, Wu XJ, De Girolamo A, Zhang L, Fuel, 139, 720 (2015)
Walsh PW, Energy Fuels, 6, 709 (1992)
Xu LH, Namkung H, Kwonc HB, Kim HT, J. Ind. Eng. Chem., 15(1), 98 (2009)
Singer JG, Combustion fossil power systems, in: Combustion Engineering inc, 3rd Ed., Rand McNally, New York (1981).
Su S, Pohl JH, Holcombe D, Fuel, 82(13), 1653 (2003)
Vargas S, Frandsen FJ, Dam-Johansen K, Prog. Energy Combust. Sci., 27(3), 237 (2001)
Lin SJ, Ding L, Zhou ZJ, Yu GS, Fuel, 186, 656 (2016)
Ni JJ, Zhou ZJ, Yu GS, Liang QF, Wang FC, Ind. Eng. Chem. Res., 49(23), 12302 (2010)
Namkung H, Hu XF, Kim HT, Wang FC, Yu GS, Fuel Process. Technol., 149, 195 (2016)
Grillot JM, Icart G, Exp. Therm. Fluid Sci., 14, 442 (1997)
Muller-Steinhagen H, Reif F, Epstein N, Watkinson AP, Can. J. Chem. Eng., 66, 42 (1988)
Barroso J, Ballester J, Ferrer LM, Jimenez S, Fuel Process. Technol., 87(8), 737 (2006)
Ma ZH, Iman F, Lu PS, Sears R, Kong LB, Rokanuzzaman AS, McCollor DP, Benson SA, Fuel Process. Technol., 88(11-12), 1035 (2007)
Strandstrom K, Mueller C, Hupa M, Fuel Process. Technol., 88(11-12), 1053 (2007)
Li S, Wu Y, Whitty KJ, Energy Fuels, 24, 1868 (2010)
Li SH, Whitty KJ, Energy Fuels, 23, 1998 (2009)
Namkung H, Xu LH, Kim CH, Yuan XZ, Kang TJ, Kim HT, Fuel Process. Technol., 141, 82 (2016)
Abd-Elhady MS, Clevers SH, Adriaans TNG, Rindt CCM, Wijers JG, van Steenhoven AA, Int. J. Heat Mass Transf., 50(1-2), 196 (2007)
Pan YD, Si FQ, Xu ZG, Romero CE, Powder Technol., 210(2), 150 (2011)
Raask E, J. Thermal Anal., 16, 91 (1979)
Raask E, Coal ash sintering model and the rate measurements, Central Electricity Research Laboratories, Surrey, UK, 145 (1982).
Hu H, Zhou K, Meng K, Song L, Lin Q, Energies, 10, 242 (2017)
Pang CH, Hewakandamby B, Wu T, Lester E, Fuel, 103, 454 (2013)
Wall TF, Bhattacharya SP, Zhang DK, Gupta RP, He X, Prog. Energy Combust. Sci., 19, 487 (1993)
Robinson AL, Buckley SG, Baxter LL, Energy Fuels, 15(1), 66 (2001)
Al-Otoom AY, Bryant GW, Elliott LK, Skrifvars BJ, Hupa M, Wall TF, Energy Fuels, 14(1), 227 (2000)
Bang JW, Lee YJ, Shin DG, Kim Y, Kim SR, Baek CS, Kwon WT, J. Korean Ceram. Soc., 53, 659 (2016)
Michot A, Smith DS, Degot S, Gault C, J. Eur. Ceram. Soc., 28, 2639 (2008)
Bourret J, Michot A, Tessier-Doyen N, Nait-Ali B, Pennec F, Alzina A, Vicente J, Peyratout CS, Smith DS, J. Am. Ceram. Soc., 97(3), 938 (2014)
Watt JD, Fereday F, J. Inst. Fuel, 42, 99 (1969)
Namkung H, Xu LH, Kang TJ, Kim DS, Kwon HB, Kim HT, Appl. Energy, 102, 1246 (2013)
Namkung H, Xu LH, Shin WC, Kang TJ, Kim HT, Fuel, 117, 1274 (2014)
Namkung H, Kang TJ, Xu LH, Jeon YS, Kim HT, Korean J. Chem. Eng., 29(4), 464 (2012)
Senior CL, Srinivasachar S, Energy Fuels, 9(2), 277 (1995)
Raask E, Mineral impurities in coal combustion, Behavior, Problem and Remedial measure, Hemisphere Publishing, Washington DC (1985).
Al-Otoom AY, Elliott LK, Wall TF, Moghtaderi B, Energy Fuels, 14(5), 994 (2000)
http://dspace.mit.edu/handle/1721.1/27224 (access: Oct. 2, 2016).
Bryers RW, in: Gupta RP, Wall TF, Baxter LL(Eds.), pp. 105-131, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).
German RM, Powder metallurgy science, 2nd Ed., Princeton, New Jersey (1994).
Gupta RP, Wall TF, Baxter LL, in: Gupta RP, Wall TF, Baxter LL(Eds.), pp. 65-84, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).
WALL TF, BHATTACHARYA SP, BAXTER LL, RICHARDS G, HARB JN, Fuel Process. Technol., 44(1-3), 143 (1995)
Anderson DW, Viskanta R, Incropera FP, J. Eng. Gas Turbines Power, 109, 215 (1987)
Mills KC, Rhine JM, Fuel, 68, 904 (1989)
Rezaei HR, Gupta RP, Bryant GW, Hart JT, Liu GS, Bailey CW, Wall TF, Miyamae S, Makino K, Endo Y, Fuel, 79, 1697 (2000)
http://www.coaltech.com.au/LinkedDocuments/Slagging%20&%20Fouling.pdf (access : Oct. 10, 2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로