ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 27, 2017
Accepted August 4, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of support layer on gas permeation properties of composite polymeric membranes

Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 1Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Malaysia 2Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Canada
pourafshari@um.ac.ir
Korean Journal of Chemical Engineering, December 2017, 34(12), 3178-3184(7), 10.1007/s11814-017-0215-x
downloadDownload PDF

Abstract

PES/Pebax and PEI/Pebax composite membranes were prepared by coating the porous PES and PEI substrate membranes with Pebax-1657. The morphology and performance of the prepared membranes were investigated by SEM and CO2 and CH4 permeation tests. The CO2 permeances of 28 and 52 GPU were achieved for PES/Pebax and PEI/Pebax composite membranes, respectively, with CO2/CH4 selectivities almost equal to that of Pebax (26). The experimental data were further subjected to a theoretical analysis using the resistance model. It was found that the porosity and the thickness of the dense section of PES substrate were an order of magnitude higher than those of PEI substitute. The porosity/thickness ratio of PEI substrate was, however, higher than PES, explaining the higher permeance of PEI/Pebax composite membrane. Substrates with porosities much higher than the Henis-Tripodi gas separation membrane were used in this work, aiming to achieve the selectivity of Pebax, rather than those of the substrate membrane materials.

References

Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(15), 2051 (2000)
Baker RW, Membrane Technology and Applications, John Wiley & Sons Ltd. (2004).
Luis P, Van Gerven T, Van der Bruggen B, Prog. Energy Combust. Sci., 38(3), 419 (2012)
Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jiang Z, Guiver MD, Energy Environ. Sci., 9, 1863 (2016)
Ismail AF, Khulbe K, Matsuura T, Gas Separation Membranes: Polymeric and Inorganic, Springer (2015).
Freeman B, Yampolskii Y, Pinnau I, Materials science of membranes for gas and vapor separation, John Wiley & Sons (2006).
Hofmann D, Tocci E, Membrane Operations: innovative separations and transformations (2009).
Adewole JK, Ahmad AL, Korean J. Chem. Eng., 33(10), 2998 (2016)
Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
Lin H, Freeman BD, J. Mol. Struct., 739, 57 (2005)
Husken D, Visser T, Wessling M, Gaymans RJ, J. Membr. Sci., 346(1), 194 (2010)
Li T, Pan YC, Peinemann KV, Lai ZP, J. Membr. Sci., 425, 235 (2013)
Reijerkerk SR, Jordana R, Nijmeijer K, Wessling M, Int. J. Greenh. Gas Con., 5, 26 (2011)
Car A, Stropnik C, Yave W, Peinemann KV, Sep. Purif. Technol., 62(1), 110 (2008)
Car A, Stropnik C, Yave W, Peinemann KV, J. Membr. Sci., 307(1), 88 (2008)
Murali RS, Ismail AF, Rahman MA, Sridhar S, Sep. Purif. Technol., 129, 1 (2014)
Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL, Ind. Eng. Chem. Res., 49(14), 6530 (2010)
Liu L, Chakma A, Feng XS, J. Membr. Sci., 235(1-2), 43 (2004)
Nafisi V, Hagg MB, J. Membr. Sci., 459, 244 (2014)
Scofield JMP, Gurr PA, Kim J, Fu Q, Kentish SE, Qiao GG, J. Membr. Sci., 4999, 191 (2016)
Mosleh S, Mozdianfard M, Hemmati M, Khanbabaei G, Polym. Compos., 38, 1363 (2015)
Jomekian A, Behbahani RM, Mohammadi T, Kargari A, Korean J. Chem. Eng., 34(2), 440 (2017)
Cheng J, Hu L, Ji C, Zhou J, Cen K, RSC Adv., 5, 60453 (2015)
Cheng J, Hu L, Li Y, Ji C, Zhou J, Cen K, RSC Adv., 6, 2055 (2016)
Lilleparg J, Georgopanos P, Emmler T, Shishatskiy S, RSC Adv., 9, 11763 (2016)
Yampolskii Y, Freeman B, Membrane gas separation, Wiley Online Library (2010).
Azizi N, Arzani M, Mahdavi HR, Mohammadi T, Korean J. Chem. Eng., 34(9), 2459 (2017)
Zhao D, Ren J, Li H, Hua K, Deng M, J. Energy Chem., 23, 227 (2014)
Vankelecom IFJ, Moermans B, Verschueren G, Jacobs PA, J. Membr. Sci., 158(1-2), 289 (1999)
Zhu LX, Jia WG, Kattula M, Ponnuru K, Furlani EP, Lin HQ, J. Membr. Sci., 514, 684 (2016)
Madaeni SS, Badieh MMS, Vatanpour V, Polym. Eng. Sci., 53(9), 1878 (2013)
Jadav GL, Aswal VK, Bhatt H, Chaudhari JC, Singh PS, J. Membr. Sci., 415, 624 (2012)
Tan SJ, Li L, Zhang ZB, Wang ZY, Chem. Eng. J., 157(2-3), 304 (2010)
Zhu S, Zhao S, Wang Z, Tian XX, Shi MQ, Wang JX, Wang SC, J. Membr. Sci., 493, 263 (2015)
Misdan N, Lau WJ, Ismail AF, Matsuura T, Desalination, 329, 9 (2013)
Tiraferri A, Yip NY, Phillip WA, Schiffman JD, Elimelech M, J. Membr. Sci., 367(1-2), 340 (2011)
Zhao XZ, Li J, Liu CK, Desalination, 408, 102 (2017)
Wijmans JG, Hao PJ, J. Membr. Sci., 494, 78 (2015)
Chung TS, Loh ESP, Shieh JJ, Chem. Eng. Sci., 55(6), 1093 (2000)
Matsuura T, Synthetic membranes and membrane separation processes, CRC Press (1993).
Henis JM, Tripodi MK, J. Membr. Sci., 8, 233 (1981)
Bennett M, Brisdon BJ, England R, Field RW, J. Membr. Sci., 137(1-2), 63 (1997)
Ismail AF, Lai PY, Sep. Purif. Technol., 33(2), 127 (2003)
Sani NAA, Lau WJ, Ismail AF, Korean J. Chem. Eng., 32(4), 743 (2015)
Mulder J, Basic principles of membrane technology, Springer Science & Business Media (2012).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로