ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 23, 2017
Accepted August 9, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells: Effects and limitations

Department of Energy Systems Research and Department of Materials Science & Engineering, Ajou University, Suwon 16499, Korea 1Division of Materials Science & Engineering, Hanyang University, Seoul 04763, Korea
Korean Journal of Chemical Engineering, December 2017, 34(12), 3200-3207(8), 10.1007/s11814-017-0222-y
downloadDownload PDF

Abstract

Cu-based compounds can be a good candidate for a low cost solar cell material. In particular, CuxO (x : 1- 2) has a good visible light absorbing bandgap at 1-2 eV. As for using nanostructures in solar cell applications, metal nanoparticle-induced localized plasmon resonance is a promising way to increase light absorbance, which can help improve the efficiency of solar cells. We fabricated ZnO nanorod/Au nanoparticles/Cu2O nanostructures to study their solar cell performance. ZnO nanorods and Cu2O layer were synthesized by the electrodeposition method. Size-controlled Au nanoparticles were deposited using E-beam evaporator for localized surface plasmon resonance (LSPR) effect. By inserting Au plasmon nanoparticles and annealing Au NPs in solar cells, we could tune the maximum incident photon-to-current efficiency wavelength. However, the potential well formed by Au NP at the ZnO/Cu2O junction leads to charge-trapping, based on the constructed electronic band analysis. LSPR-induced hot carrier generation is proposed to promote carrier transport further in the presence of Au NPs.

References

Kamat PV, J. Phys. Chem., 111, 2834 (2007)
Loferski JJ, J. Appl. Phys., 27, 777 (1956)
Wadia C, Alivisatos AP, Kammen DM, Environ. Sci. Technol., 43, 2072 (2009)
Ergen O, Gibb A, Vazquez-Mena O, Regan WR, Zettl A, Appl. Phys. Lett., 106, 103904 (2015)
Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R, Appl. Phys. Lett., 88, 163502 (2006)
Chen X, Lin P, Yan X, Bai Z, Yuan H, Shen Y, Liu Y, Zhang G, Zhang Z, Zhang Y, ACS Appl. Mater. Interf, 7, 3216 (2015)
Musselman KP, Wisnet A, Iza DC, Hesse HC, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Mater., 22(35), E254 (2010)
Tsin F, Venerosy A, Vidal J, Collin S, Clatot J, Lombez L, Paire M, Borensztajn S, Broussillou C, Grand PP, Scientific Reports, 5 (2015).
Garine G, Fernando E, Carlos JP, Ricardo EM, Francisco M, Dietmar L, Jose RRB, Enrique AD, J. Phys. D-Appl. Phys., 45, 245301 (2012)
Mirtchev P, Liao K, Jaluague E, Qiao Q, Tian Y, Varela M, Burch KS, Pennycook SJ, Perovic DD, Ozin G, J. Mater. Chem., 2, 8525 (2014)
Yuhas BD, Yang PD, J. Am. Chem. Soc., 131(10), 3756 (2009)
Luo J, Steier L, Son MK, Schreier M, Mayer MT, Gratzel M, Nano Lett., 16, 1848 (2016)
Liu Q, Sandgren E, Barnhart M, Zhu R, Huang G, Photonics, 2, 893 (2015)
Abd-Ellah M, Thomas JP, Zhang L, Leung KT, Sol. Energy Mater. Sol. Cells, 152, 87 (2016)
Mattox TM, Ye XC, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ, Adv. Mater., 27(38), 5830 (2015)
Ren S, Wang B, Zhang H, Ding P, Wang Q, ACS Appl. Mater. Interfaces, 7, 4066 (2015)
Sriram M, Zong K, Vivekchand S, Gooding JJ, Sensors, 15, 25774 (2015)
Gao Y, Jin F, Su Z, Zhao H, Luo Y, Chu B, Li W, Organic Electronics, 39, 71 (2016)
Yen YC, Chen PH, Chen JZ, Chen JA. Lin KJ, ACS Appl. Mater. Interfaces, 7, 1892 (2015)
Ahn S, Nardes AM, Rourke D, van de Lagemaat J, Kopidakis N, Park W, The effect of infrared sensitizer (presentation recording). In, 2015; 95620D-95620D-95621.
Ievskaya Y, Hoye R, Sadhanala A, Musselman K, MacManus- Driscoll J, Sol. Energy Mater. Sol. Cells, 135, 43 (2015)
Abdelfatah M, Ledig J, El-Shaer A, Wagner A, Marin-Borras V, Sharafeev A, Lemmens P, Mosaad MM, Waag A, Bakin A, Sol. Energy Mater. Sol. Cells, 145, 454 (2016)
Shinagawa T, Chigane M, Tani J, Izaki M, In:Meeting Abstracts: The Electrochemical Society, 2016; 1636-1636.
Jeong SS, Mittiga A, Salza E, Masci A, Passerini S, Electrochim. Acta, 53(5), 2226 (2008)
Cui J, Gibson UJ, J. Phys. Chem., 114, 6408 (2010)
Musselman KP, Marin A, Wisnet A, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Funct. Mater., 21(3), 573 (2011)
Perng DC, Hong MH, Chen KH, Chen KH, J. Alloy. Compd., 695, 549 (2017)
Dong H, Wu Z, El-Shafei A, Xia B, Xi J, Ning S, Jiao B, Hou X, J. Mater. Chem., 3, 4659 (2015)
Liu GQ, Liu ZQ, Chen YH, Huang K, Li L, Tang FL, Gong LX, Hu Y, Zhang XN, Optik - International Journal for Light and Electron Optics, 124, 5124 (2013).
Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY, Nano Lett., 11, 4251 (2011)
Jia K, Bijeon JL, Adam PM, Ionescu RE, Plasmonics, 8, 143 (2013)
Nakano Y, Saeki S, Morikawa T, Appl. Phys. Lett., 94, 022111 (2009)
Viezbicke BD, Patel S, Davis BE, Birnie DP, Physica Status Solidi (b), 252, 1700 (2015)
Honsberg C, Bowden S, ORG. (access April-June 2013) http:// pveducation.org/pvcdrom/properties-of-sunlight/sun-position-calculator (2014).
Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP, Phys. Rev. B, 28, 1965 (1983)
Eom K, Kim S, Lee D, Seo H, RSC Adv, 5, 103803 (2015)
Santoni A, Biccari F, Malerba C, Valentini M, Chierchia R, Mittiga A, J. Phys. D-Appl. Phys., 46, 175101 (2013)
Yoo IH, Kalanur SS, Lee SY, Eom K, Jeon H, Seo H, RSC Adv., 6, 82900 (2016)
Platzer-Bjorkman C, Frisk C, Larsen JK, Ericson T, Li SY, Scragg JJS, Keller J, Larsson F, Torndahl T, Appl. Phys. Lett., 107, 243904 (2015)
Hao X, Sun K, Yan C, Liu F, Huang J, Pu A, et al., In:Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd: IEEE, 2016; 2164-2168.
Zheng X, Chen B, Yang M, Wu C, Orler B, Moore RB, et al., ACS Energy Lett., 1, 424 (2016)
Yoon K, Hyun JK, Connell JG, Amit I, Rosenwaks Y, Lauhon LJ, Nano Lett., 13, 6183 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로