ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 20, 2015
Accepted September 22, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Carbonization and CO2 activation of scrap tires: Optimization of specific surface area by the Taguchi method

Department of Chemical Engineering, Amirkabir University of Technology, No. 424, Hafez Ave, P. O. Box 15875-4413, Tehran, Iran
mozaffarian@aut.ac.ir
Korean Journal of Chemical Engineering, February 2017, 34(2), 366-375(10), 10.1007/s11814-016-0266-4
downloadDownload PDF

Abstract

This research demonstrates the production of activated carbon from scrap tires via physical activation with carbon dioxide. A newly constructed apparatus was utilized for uninterrupted carbonization and activation processes. Taguchi experimental design (L16) was applied to conduct the experiments at different levels by altering six operating parameters. Carbonization temperature (550-700 °C), activation temperature (800-950 °C), process duration (30-120 min), CO2 flow rate (400 and 600 cc/min) and heating rate (5 and 10 °C/min) were the variables examined in this study. The effect of parameters on the specific surface area (SSA) of activated carbon was studied, and the influential parameters were identified employing analysis of variance (ANOVA). The optimum conditions for maximum SSA were: carbonization temperature=650 °C, carbonization time=60min, heating rate=5 °C/min, activation temperature=900 °C, activation time=60min and CO2 flow rate=400 cc/min. The most effective parameter was activation temperature with an estimated impact of 49%. The activated carbon produced under optimum conditions was characterized by pore and surface structure analysis, iodine adsorption test, ash content, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The process yield for optimized activated carbon was 13.2% with the following properties: specific surface area=437m2/g, total pore volume=0.353 cc/g, iodine number=404.7mg/g and ash content=13.9% along with an amorphous structure and a lot of oxygen functional groups. These properties are comparable to those of commercial activated carbons.

References

Martinez JD, Puy N, Murillo R, Garcia T, Navarro MV, Mastral AM, Renew. Sust. Energ. Rev., 23, 179 (2013)
Managing end-of-life-tires-full report, World Business Council for Sustainable Development (November 2008).
Parthasarathy P, Choi HS, Park HC, Hwang JG, Yoo HS, Lee BK, Upadhyay M, Korean J. Chem. Eng., 33(8), 2268 (2016)
Onay O, Koca H, Fuel, 150, 169 (2015)
Commission E, Landfill of waste directive, council directive 1999/31/ec, European Commission, Brussels (1999).
Pipilikaki P, Katsioti M, Papageorgiou D, Fragoulis D, Chaniotakis E, Cement Concrete Res., 27, 843 (2005)
Mui EL, Ko DC, McKay G, Carbon, 42, 2789 (2004)
Conesa JA, Galvez A, Mateos F, Martin-Gullon I, Font R, J. Hazard. Mater., 158(2-3), 585 (2008)
Carrasco F, Gningue Y, Heitz M, Environ. Technol., 19, 461 (1998)
Benazzouk A, Douzane O, Langlet T, Mezreb K, Roucoult JM, Queneudec M, Cement Concrete Comp., 29, 732 (2007)
Arabani M, Mirabdolazimi SM, Sasani AR, Constr. Build. Mater., 24, 1060 (2010)
Navarro FJ, Partal P, Rancisco F, Martinez-Boza J, Gallegos C, Polym. Test, 29, 588 (2010)
Fernandez AM, Barriocanal C, Alvarez R, J. Hazard. Mater., 203, 236 (2012)
Betancur M, Martinez JD, Murillo R, J. Hazard. Mater., 168(2-3), 882 (2009)
Chan O, Cheung W, McKay G, Carbon, 49, 4674 (2011)
Alsaleh A, Sattler ML, Curr. Sust./Renewe. Energy Rep., 1, 129 (2014)
Saleh TA, Gupta VK, Adv. Colloid Interface Sci., 211, 93 (2014)
Acevedo B, Barriocanal C, Fuel Process. Technol., 134, 275 (2015)
Acevedo B, Barriocanal C, Lupul I, Gryglewicz G, Fuel, 151, 83 (2015)
Acosta R, Tavera C, Gauthier-Maradei P, Nabarlatz D, Int. J. Chem. React. Eng., 13, 189 (2015)
Betancur M, Martinez JD, Murillo R, J. Hazard. Mater., 168(2-3), 882 (2009)
Ngernyen Y, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 23(6), 1046 (2006)
Wu G, Jeong TS, Won CH, Cui L, Korean J. Chem. Eng., 27(5), 1476 (2010)
Parthasarathy P, Narayanan S, Korean J. Chem. Eng., 32(11), 2236 (2015)
Kang HY, Park SS, Rim YS, Korean J. Chem. Eng., 23(6), 948 (2006)
Dias JM, Alvim-Ferraz M, Almeida MF, Rivera-Utrilla J, Sanchez-Polo M, J. Environ. Manage., 85, 833 (2007)
Su CI, Zeng ZL, Peng CC, Lu CH, Fiber. Polym., 13, 21 (2012)
Ekrami E, Dadashian F, Soleimani M, Fiber. Polym., 15, 1855 (2014)
Esfandiari A, Kaghazchi T, Soleimani M, J. Taiwan Inst. Chem. Eng., 43, 631 (2012)
Mui ELK, Cheung WH, Valix M, McKay G, Microporous Mesoporous Mater., 130, 287 (2010)
Gupta BGVK, Rastogi A, Agarwal S, Nayak A, J. Hazard. Mater., 186, 891 (2001)
San Miguel G, Fowler GD, Dall'Orso M, Sollars CJ, J. Chem. Technol. Biotechnol., 77(1), 1 (2002)
Helleur R, Popovic N, Ikura M, Stanciulescu M, Liu D, J. Anal. Appl. Pyrolysis, 58, 813 (2001)
Alexandre-Franco M, Fernandez-Gonzalez C, Macias-Garcia A, Gomez-Serrano V, Adsorption, 14, 591 (2008)
Skodras G, Diamantopouiou I, Zabaniotou A, Stavropoulos G, Sakellaropoulos GP, Fuel Process. Technol., 88(8), 749 (2007)
Li L, Liu S, Zhu T, Zhu T, J. Environ. Sci., 22, 1273 (2010)
Belgacem A, Rebiai R, Hadoun H, Khemaissia S, Belmedani M, Environ. Sci. Pollut. Res., 21, 684 (2014)
Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A, Water Res., 45, 4047 (2011)
Hofman M, Pietrzak R, Chem. Eng. J., 170(1), 202 (2011)
Brady TA, RostamAbadi M, Rood MJ, Gas Sep. Purif., 10(2), 97 (1996)
Ali I, Sep. Purif. Rev., 43, 175 (2014)
Ali I, Sep. Purif. Rev., 39, 95 (2010)
Ali I, Asim M, Khan TA, J. Environ. Manage., 113, 170 (2012)
Ali I, Chem. Rev., 112(10), 5073 (2012)
Montgomery DC, Design and analysis of experiments, John Wiley & Sons (2008).
Bansal RC, Goyal M, Activated carbon adsorption, CRC Press (2010).
Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
Barrett P, Joyner L, Halenda PP, J. Am. Chem. Soc., 73, 373 (1951)
Saka C, J. Anal. Appl. Pyrolysis, 95, 21 (2012)
ASTM, Standard test method for apparent density of activated carbon, D2854-96, The American Society for Testing and Materials (2004).
ASTM, Standard test method for pH of activated carbon, The American Society for Testing and Materials (2000).
ASTM, Standard test method for total ash content of activated carbon, The American Society for Testing and Materials (2004).
Ahmedna M, Marshall WE, Rao RM, Bioresour. Technol., 71(2), 113 (2000)
Loloie Z, Soleimani M, Mozaffarian M, Optimisation of physical activation process for activated carbon production from tyre wastes, Int. J. of Global Warm., Inderscience Enterprises Ltd. (2015).
Gonzalez JF, Encinar JM, Gonzalez-Garcia CM, Sabio E, Ramiro A, Canito JL, Ganan J, Appl. Surf. Sci., 252(17), 5999 (2006)
Suuberg EM, Aarna I, Carbon, 45, 1719 (2007)
Choi GG, Jung SH, Oh SJ, Kim JS, Fuel Process. Technol., 123, 57 (2014)
Sing KS, Pure Appl. Chem., 57, 603 (1985)
Zhu J, Liang H, Fang J, Zhu J, Shi B, Clean Soil Air Water, 39, 557 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로