ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 8, 2016
Accepted October 24, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of highly monodisperse silica nanoparticles in the microreactor system

Southwest Research & Design Institute of Chemical Industry, Chengdu 610225, Sichuan, China
sumin@haohua.chemchina.com
Korean Journal of Chemical Engineering, February 2017, 34(2), 484-494(11), 10.1007/s11814-016-0297-x
downloadDownload PDF

Abstract

To avoid a poor mixing rate and local inhomogeneities in batch reactor systems, and to shorten the length of microchannels in microreactor systems, a new combined micromixer/microreactor/batch reactor system was used for the synthesis of colloidal silica particles. The silica particles with different sizes (from 20 nm to 2 μm) and size distributions (which were characterized by PDI from 0.01 to 0.40) were controllably synthesized by varying the concentration of reactants and the operating parameters in this system. The long microchannel with small diameter demonstrated a good mixing efficiency, and which produced small and uniform silica particles. In addition, the introduction of inert gas into the system intensified the mixing, and the silica particles with decreased size and narrow distribution were obtained. It was clearly demonstrated that the high mixing efficiency in the microchannel led to small and uniform silica particles. Furthermore, a theoretical foundation for the synthesis of nanoparticles in microreactors was established after illustrating the relationship of mass transfer and reaction in the system.

References

Liong M, France B, Bradley KA, Zink JI, Adv. Mater., 21(17), 1684 (2009)
Yague C, Moros M, Grazu V, Arruebo M, Santamaria J, Chem. Eng. J., 137(1), 45 (2008)
Johnson SA, Ollivier PJ, Mallouk TE, Science, 283(5404), 963 (1999)
Yang H, Zhu Y, Talanta, 68, 569 (2006)
Brinker CJS, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press (1990).
Iler RK, The Chemistry of Silica, Wiley (1979).
Su M, Su HJ, Du BL, Li XT, Ren GY, Wang SD, J. Sol-Gel. Sci. Technol., 73, 460 (2015)
Wang SF, Hsu YF, Yang TCK, Chang CM, Chen Y, Huang CY, Yen FS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 395, 148 (2005)
Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T, ACS Appl. Mater. Interfaces, 3, 1538 (2011)
Schuth F, Angew. Chem.-Int. Edit., 42, 3604 (2003)
Liang C, Li Z, Dai S, Angew. Chem.-Int. Edit., 47, 3696 (2008)
Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
Park SK, Kim KD, Kim HT, Colloids Surf. A: Physicochem. Eng. Asp., 197, 7 (2002)
Bogush GH, Tracy MA, Zukoski CF, J. Non-Cryst. Solids, 104, 95 (1988)
Lei Z, Xiao Y, Dang L, Lu M, You W, Microporous Mesoporous Mater., 96, 127 (2006)
Lindberg R, Sjoblom J, Sundholm G, Colloids Surf. A: Physicochem. Eng. Asp., 99, 79 (1995)
Huang Y, Pemberton JE, Colloids Surf. A: Physicochem. Eng. Asp., 360, 175 (2010)
Arriagada FJ, Osseo-Asare K, J. Colloid Interface Sci., 211(2), 210 (1999)
Chang CL, Fogler HS, Langmuir, 13(13), 3295 (1997)
Esquena J, Tadros TF, Kostarelos K, Solans C, Langmuir, 13(24), 6400 (1997)
Finnie KS, Bartlett JR, Barbe CJA, Kong LG, Langmuir, 23(6), 3017 (2007)
Venditti F, Angelico R, Palazzo G, Colafemmina G, Ceglie A, Lopez F, Langmuir, 23(20), 10063 (2007)
Asaro F, Benedetti A, Freris I, Riello P, Savko N, Langmuir, 26(15), 12917 (2010)
Hartlen KD, Athanasopoulos APT, Kitaev V, Langmuir, 24(5), 1714 (2008)
Yokoi T, Sakamoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T, J. Am. Chem. Soc., 128(42), 13664 (2006)
Davis TM, Snyder MA, Krohn JE, Sapatsis MT, Chem. Mater., 18, 5814 (2006)
Chang CH, Paul B, Remcho V, Atre S, Hutchison J, J. Nanopart. Res., 10, 965 (2008)
Fogl EHS, Elements of Chemical Reaction Engineering, Prentice-Hall of India (2004).
Kim KD, Kim HT, J. Sol-Gel Sci. Technol., 25, 183 (2002)
He P, Greenway G, Haswell SJ, Chem. Eng. J., 167(2-3), 694 (2011)
Khan SA, Gunther A, Schmidt MA, Jensen KF, Langmuir, 20(20), 8604 (2004)
Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J, Chem. Eng. J., 171(2), 674 (2011)
Su M, Su HJ, Du BL, Li XT, Ren GY, Wang SD, J. Sol-Gel Sci. Technol., 72, 375 (2014)
Faryadi M, Rahimi M, Akbari M, Korean J. Chem. Eng., 33(3), 922 (2016)
Wakashima Y, Suzuki A, Kawasaki S, Matsui K, Hakuta Y, J. Chem. Eng. Jpn., 40(8), 622 (2007)
Lester E, Blood P, Denyer J, Giddings D, Azzopardi B, Poliakoff M, J. Supercrit. Fluids, 37(2), 209 (2006)
Mae K, Suzuki A, Maki T, Hakuta Y, Sato H, Arai K, J. Chem. Eng. Jpn., 40(12), 1101 (2007)
Kawasaki S, Xiuyi Y, Sue K, Hakuta Y, Suzuki A, Arai K, J. Supercrit. Fluids, 50(3), 276 (2009)
Ying Y, Chen GW, Zhao YC, Li SL, Yuan Q, Chem. Eng. J., 135(3), 209 (2008)
Huang Y, Pemberton JE, Colloids Surf. A: Physicochem. Eng. Asp., 377, 76 (2011)
Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH, Langmuir, 21(4), 1516 (2005)
Matsoukas T, Gulari E, J. Colloid Interface Sci., 124, 252 (1988)
Bogush GH, Zukoski CF, J. Colloid Interface Sci., 142, 1 (1991)
Klemperer WG, Ramamurthi SD, J. Non-Cryst. Solids, 121, 16 (1990)
Boukari H, Lin JS, Harris MT, J. Colloid Interface Sci., 194(2), 311 (1997)
Lee K, Look JL, Harris MT, Mccormick AV, J. Colloid Interface Sci., 194(1), 78 (1997)
Park J, Joo J, Kwon SG, Jang Y, Hyeon T, Angew. Chem.-Int. Edit., 46, 4630 (2007)
Green DL, Jayasundara S, Lam YF, Harris MT, J. Non-Cryst. Solids, 315, 166 (2003)
LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847 (1950)
Guo JJ, Lu XH, Cheng YC, Li Y, Xu GJ, Cui P, J. Colloid Interface Sci., 326(1), 138 (2008)
Vasconcelos DCL, Campos WR, Vasconcelos V, Vasconcelos WL, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 334, 53 (2002)
Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T, J. Colloid Interface Sci., 360(1), 1 (2011)
Blaaderen AV, Geest JV, Vrij A, J. Colloid Interface Sci., 154, 481 (1992)
Chang SM, Lee M, Kim WS, J. Colloid Interface Sci., 286(2), 536 (2005)
Burns JR, Ramshaw C, Chem. Eng. Res. Des., 77(3), 206 (1999)
Crank J, The Mathematics of Diffusion, Oxford Science Publications (1979).
Laddha GS, Degaleesan TE, Transport Phenomena in Liquid Extraction, McGraw-Hill, New York (1978).
Othmer DF, Chen HT, Ind. Eng. Chem. Process Des. Dev., 1, 249 (1962)
Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Bakar MA, Adnan R, Chee CK, Colloids Surf. A: Physicochem. Eng. Asp., 294, 102 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로